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Abstract

Organic semiconductors represent a large group of materials consisting of small molecules
or longer polymer chains. In the condensed phase, these polyaromatic molecules are held
together by relatively weak interactions between their electric quadropoles and by van
der Waals forces. Perylene and its derivatives have attracted significant interest as active
layers for light harvesting, photovoltaics, and photoinduced charge and energy transfer
processes. This thesis focuses mainly on crystals of perylene-based molecules because
these substances are among the best characterized organic materials. Perylene derivatives
are robust organic dyes absorbing and emitting light in the visible range and in the near
infrared. They display a strong tendency to self-assemble into molecular aggregates, liquid
crystals, or even crystals. In order to increase their efficiency and stability, these materials
have been studied quite intensively. In particular, their possible application in solar-cells
needs insight into optical excitation and charge transport processes. The vision is that
in the near future organic electronics will successfully compete with inorganic electronics
for applications that require mechanical flexibility, high area coverage, and low cost mass
production.

The performance of these materials as charge or energy transport materials does not
arise exclusively from the electronic properties of the individual molecules, but it depends
as well on favorable intermolecular interactions, such as π stacking. In fact it can be
shown that many perylene derivatives display very similar optical spectra as dissolved
monomers, whereas in their crystalline phase, the interactions between the π orbitals of
adjacent molecules result in quite diversified optical properties. The interactions between
these π orbitals depend strongly on the side wings attached to the perylene core since
different side groups result in different stacking geometries. This difference in geometric
overlap governs the level of interactions between neutral excitons and charge transfer
states, so that it becomes the starting point for understanding the microscopic processes
involved.

After a careful investigation of electronic excitations in a single molecule, this thesis de-
velops theoretical tools allowing to quantify intermolecular interactions and their impact
onto the optical properties of molecular crystals. As the deformation of a relaxed excited
molecule defines the vibronic progressions observed in absorption and photoluminescence,
the relation between electronic excitations, deformation patterns and the elongation of
molecular vibrations are studied for a monomer. The deformation of positively or nega-
tively charged molecular ions with respect to the neutral ground state is calculated with
density functional theory (DFT), and the geometry in the optically excited state is de-
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duced from constrained DFT and time-dependent DFT. These deformations are then
projected onto the vibrational eigenvectors, allowing in turn to compare calculated ab-
sorption, photoluminescence, and resonant Raman spectra to experimental observations.
For later use in an exciton model addressing molecular crystals, all of these deformations
are reinterpreted in terms of the elongation of an effective internal vibration.

In the crystalline phase, neutral molecular excitations and charge transfer between
adjacent molecules are coupled via electron and hole transfer, two quantities relating
directly to the width of the conduction and valence band. Based on the crystal structure
determined by X-ray diffraction, DFT and Hartree-Fock are used for the calculation of
the electronic states of a dimer of stacked molecules. The resulting transfer parameters
for electron and hole are inserted into the exciton model for the coupling between Frenkel
excitons and charge transfer states.

A comparison between the calculated dielectric tensor and the observed optical spectra
allows to deduce the relative energetic positions of Frenkel excitons and the charge-transfer
state involving stack neighbors, a key parameter for various electronic and optoelectronic
device application. Irrespective of the energetic ordering of these two types of excitations,
the exciton model provides a new sum rule for the second moment of the optical response,
giving a direct measure of the impact of electron and hole transfer onto the observed
absorption spectra of molecular crystals.

For six out of seven perylene pigments studied, the exciton model results in excellent
agreement between calculated and observed optical properties, and for the seventh com-
pound, the agreement was still within acceptable range. Moreover, the model calculations
described in this thesis have revealed that the published dielectric tensor of one of these
molecular crystals (PTCDA) has resulted from an erroneous evaluation of ellipsometry
data, but a refined analysis of these spectra gives experimental line shapes that can in-
deed be reproduced by the exciton model. Among the materials studied, PTCDA is the
only compound where the charge transfer state along the stacking direction has an en-
ergy far below the neutral molecular excitation. Therefore, photoluminescence excitation
spectroscopy with photon energy below the main absoption features allows the selective
excitation of photoluminescence from charge transfer states. The dispersion branches
arising from the exciton model corroborate previous interpretations of the radiative re-
combination mechanisms, and they allow to assign the respective excitation resonances
to specific charge transfer states.

In conclusion, we have demonstrated a successful realization of a theoretical approach
describing the fundamental interactions influencing on exciton transfer in crystalline pery-
lene pigments. Furthermore, the microscopic parameter set obtained has allowed to calcu-
late an optical response congruent with experimental spectra, quantifying several intrinsic
variables of the molecular crystals for the first time.
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Zusammenfassung

Organische Halbleiter sind eine sehr vielfältige Klasse von Materialien, die sich aus kleinen
Molekülen und langen Polymerketten zusammensetzen können. Die aus polyaromatischen
Molekülen aufgebauten Festkörper entstehen durch relativ schwache attraktive Kräfte
zwischen den Molekülen, die auf ihren elektrischen Quadrupolmomenten und der van der
Waals Wechselwirkung beruhen. Insbesondere Perylen und seine Derivate finden Anwen-
dungen als aktive Materialien für Solarzellen, Lichtsensoren und lichtinduzierten Ladungs-
und Energietransport. Die vorliegende Dissertation beschäftigt sich hauptsächlich mit
kristallinen Perylen-Pigmenten, weil diese Substanzen zu den am besten charakterisierten
organischen Materialien gehören.

Derivate von Perylen sind besonders stabile organische Farbstoffe, die im Sichtbaren
und Nahinfrarot Licht emittieren und absorbieren. Sie tendieren dazu, Molekülaggregate,
flüssigkristalline Phasen und sogar kristalline Festkörpern zu bilden. Diese Materialien
wurden bereits intensiv untersucht, um ihren Wirkungsgrad und ihre Beständigkeit zu
verbessern. In Bereichen, die hohe mechanische Flexibilität und niedrige Produktionskos-
ten auf großen Flächen voraussetzen, werden organische Halbleiter in absehbarer Zukunft
erfolgreich mit anorganischen Halbleitern konkurrieren. Allerdings erfordern insbesondere
Anwendungen als Solarzellen ein tieferes theoretisches Verständnis der optischen Anregun-
gen, der Bildung von Elektron-Loch-Paaren, sowie des Transports von Ladungsträgern.

Der Ladungs- und Energietransport in diesen Materialien hängt nicht nur von den
elektronischen Eigenschaften einzelner Moleküle ab, sondern vielmehr auch von den Wech-
selwirkungen zwischen benachbarten Molekülen (z.B. π stacking). Tatsächlich kann man
zeigen, dass viele Perylenderivate in Form gelöster Monomere sehr ähnliche optische Spek-
tren zeigen. Im Gegensatz dazu bewirken die Wechselwirkungen zwischen den π Orbitalen
benachbarter Moleküle deutlich verschiedene optischen Eigenschaften.

Die Wechselwirkungen zwischen diesen π Orbitalen hängen stark davon ab, welche Sei-
tengruppen am Perylenmolekül angebunden sind, da verschiedene Seitengruppen verschie-
dene Kristallgeometrien nach sich ziehen. Deren unterschiedliche Geometrie verändert
sowohl die Wechselwirkungen zwischen neutralen Exzitonen als auch die elektronischen
Zustände, die am Ladungstransfer beteiligt sind. Daher ist die Kristallgeometrie der Aus-
gangspunkt, um sämtliche mikroskopischen Prozesse zu verstehen.

Die mechanische Verformung von elektronisch angeregten Molekülen bestimmt die vi-
bronische Progression, die bei Lichtabsorptions- und Photolumineszenzexperimenten be-
obachtet wird. Daher untersuchen wir die Beziehung zwischen den elektronischen Anre-
gungen, den Verformungen und den Vibrationen am Monomer. Wir berechnen die Ver-
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formung der Molekülionen im Vergleich zum neutralen Grundzustand mittels der Dich-
tefunktionaltheorie (DFT). Außerdem schließen wir aus Ergebnissen der eingeschränkten
DFT und der zeitabhängigen DFT auf die Molekülgeometrie im optisch angeregten Zu-
stand. Indem wir Verformungen auf die Eigenvektoren der Vibrationen projizieren, können
wir unsere berechneten Absorptions-, Photolumineszenz- und resonanten Ramanspektren
mit experimentellen Daten vergleichen. Im Hinblick auf die spätere Anwendung in ei-
nem Exzitonenmodell für die kristalline Phase werden diese Auslenkungen verschiedener
Vibrationsmoden zu einer effektiven internen Vibrationsmode zusammengefasst.

In Kristallen sind Anregungen neutraler Moleküle mit den Ladungstransferzuständen
zwischen benachbarten Molekülen über den Elektronen- und Lochtransfer gekoppelt. Die
dafür benötigten Transferparameter hängen direkt mit der Breite des Leitungs- und Va-
lenzbandes zusammen. Ausgehend von Röntgenstrukturmessungen der Kristalle verwen-
den wir die DFT und Hartree-Fock Methode, um die elektronischen Zustände eines Dimers
von gestapelten Molekülen zu berechnen. Wir setzen dann die sich daraus ergebenden
Transferparameter der Elektronen und Löcher in unser Modell für die Kopplung zwischen
Frenkelexzitonen und Ladungstransferzuständen ein.

Wir vergleichen unsere theoretischen Ergebnisse für den dielektrischen Tensor mit dem
experimentell beobachteten optischen Spektrum und können damit die Energieunterschie-
de zwischen Frenkelexzitonen und ladungstrennenden Zuständen benachbarter Moleküle
bestimmen. Dies ist ein Schlüsselergebnis für verschiedenste elektronische und optoelek-
tronische Anwendungen. Aus dem Exzitonenmodell folgt eine bisher nicht bekannte Sum-
menregel für das zweite Moment der optischen Absorption, die zwar nicht von der energe-
tischen Lage neutraler molekularer Anregungen und Ladungstransferanregungen abhängt,
aber ein eindeutiges Maß für den Einfluss von Elektron- und Lochtransfer auf die optischen
Eigenschaften darstellt.

In sechs von sieben untersuchten Perylenfarbstoffen finden wir eine exzellente Über-
einstimmung unserer Rechnungen mit gemessenen optischen Eigenschaften. Für die siebte
Perylenverbindung ist die Übereinstimmung immerhin noch akzeptabel. Außerdem haben
die Berechnungen in dieser Arbeit gezeigt, dass der bisher veröffentlichte dielektrische
Tensor eines dieser Molekülkristalle (PTCDA) aus einer fehlerhaften Auswertung von El-
lipsometriedaten herrührt. Eine genauere Auswertung der Spektren hat eine exzellente
Übereinstimmung mit unseren Vorhersagen ergeben. Unter allen von uns untersuchten
Materialien ist PTCDA die einzige Verbindung, in der der Ladungstransferzustand ent-
lang der Stapelrichtung signifikant unterhalb der neutralen Molecülanregung liegt. Daher
erlaubt die Photolumineszenzspektroskopie mit Photonenenergien unterhalb der niedrigs-
ten starken Absorptionsbande die gezielte Anregung von ladungstrennenden Zuständen.
Die Dispersionskurven, die sich aus unserem Exzitonenmodell ergeben, bekräftigen frühere
Interpretationen der strahlenden Rekombinationsmechanismen und ermöglichen es uns,
die jeweiligen Anregungsresonanzen bestimmten ladungstrennenden Zuständen zuzuwei-
sen.

Wir haben in dieser Arbeit ein neues theoretisches Modell für die wesentlichen Wech-
selwirkungen zwischen Exzitonen in kristallinen Perylenfarbstoffen entwickelt. Mit Hil-
fe dieses Modells ist es uns gelungen, experimentelle Daten für die optischen Eigen-
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KAPITEL 0. ZUSAMMENFASSUNG

schaften von etlichen Perlyenverbindungen zu reproduzieren. Die außerordentlich gute
Übereinstimmung unseres Modells mit dem Experiment hat es uns erlaubt, einige wich-
tige Parameter zu quantifizieren, die bisher weder in Experimenten zugänglich sind noch
vergleichbar genau berechnet werden können.

v



vi



Contents

Abstract i

Zusammenfassung iii

1 Introduction 5

2 Molecular properties and quantum chemical analysis 9
2.1 Quantum chemistry and computational methods . . . . . . . . . . . . . . . 9

2.1.1 Hartree-Fock and Slater determinants . . . . . . . . . . . . . . . . . 10
2.1.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Excited state calculations . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Theory of spectroscopic observables . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Displaced harmonic oscillator . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Solution spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Raman spectroscopy of organic molecules . . . . . . . . . . . . . . . 18

2.3 Perylene compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Molecular properties . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Effective vibrational mode in solution spectra . . . . . . . . . . . . 27
2.3.3 Calculation of effective internal mode . . . . . . . . . . . . . . . . . 27
2.3.4 Geometry optimization and reorganization energies for different elec-

tronic configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.5 Huang-Rhys factors for neutral excited molecules and ionized states 28

2.4 Pentacene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Spectroscopic properties of non-planar molecules . . . . . . . . . . . . . . . 43

2.5.1 TPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Rubrene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Crystal structure of perylene compounds 51
3.1 Crystal geometry and dielectric response . . . . . . . . . . . . . . . . . . . 51

3.1.1 Transition dipoles of monomers . . . . . . . . . . . . . . . . . . . . 51
3.2 Crystal unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Electronic interaction between stacked molecules . . . . . . . . . . . . . . . 59

3.3.1 Fermionic transfer integrals . . . . . . . . . . . . . . . . . . . . . . 59

1



CONTENTS

3.3.2 Electronic band structure . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Transition dipoles in stacked dimers . . . . . . . . . . . . . . . . . . 66

3.3.4 Transition dipoles derived from TD-DFT . . . . . . . . . . . . . . . 67

3.4 Exciton transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Exciton Model 75

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Frenkel Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Interference between Frenkel excitons and CT transitions . . . . . . . . . . 81

4.4 Dipole moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Sum rules for transition dipoles . . . . . . . . . . . . . . . . . . . . 88

4.5.2 Sum rules for exciton transfer . . . . . . . . . . . . . . . . . . . . . 89

4.6 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Application to perylene compounds 95

5.1 Crystal preparation and optical measurements . . . . . . . . . . . . . . . . 95

5.1.1 Temperature dependence of optical observables . . . . . . . . . . . 96

5.2 Modelling of optical spectra with Frenkel excitons . . . . . . . . . . . . . . 96

5.3 Modelling of optical spectra with interference of Frenkel excitons and CT
transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2 Optical spectra of perylene compounds . . . . . . . . . . . . . . . . 101

5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Photoluminescence excitation of PTCDA . . . . . . . . . . . . . . . . . . . 117

5.4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.2 Excitonic dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.3 Interpretation of PLE and PL resonances . . . . . . . . . . . . . . . 124

5.4.4 Summary photoluminescence . . . . . . . . . . . . . . . . . . . . . . 125

6 Conclusion 127

A Appendix 139

A.1 Fourier transform of the infinite stack . . . . . . . . . . . . . . . . . . . . . 139

A.2 Transition dipole moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.3 Huang-Rhys factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.4 Visualization of orbitals in molecule pairs . . . . . . . . . . . . . . . . . . . 144
A.5 Tables of vibronic modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B List of Abbreviations 151

C Acknowledgement 155

2



CONTENTS

D List of Publications 157

3



CONTENTS

4



Chapter 1

Introduction

One of the most recent research topics in the field of optical devices is based on organic
molecules, and it receives much attention both from the scientific community and from its
commercial counterpart. Organic molecules show promising properties, such as excellent
light fastness [1, 2, 3], emission bands in the visible range and efficient transport of charge
between adjacent molecules [4]. Together with their flexibility and heat resistance, to
name a few advantages over silicon based devices, they have the potential to replace tra-
ditional inorganic devices in many applications. Moreover, organic light-emitting diodes
have a higher power efficiency than III-V semiconductors. One example for new ap-
plications are heads-up displays integrated in the windscreen, where both transparency
and flexibility are required. The market for devices based on organic molecules is still
under development and during the next few years it has a large potential for growth.
Besides light-emitting devices, recent applications include photovoltaic cells [5, 6], field
effect transistors [7], erasable optical disks [8], sensors [9] and xerographic photoreceptors
[10].

In this thesis the main focus will be on a specific class of molecular crystals called
perylene pigments. This refers to a class of high performance pigments made up of
N,N ′-disubstituted perylene-3,4,9,10-tetracarboxylic acid diimides or perylene-3,4,9,10-
tetracarboxylic acid dianhydride. The perylene core is the base for different derivatives
which are typically characterized by their different side groups attached to the core, com-
pare Fig. 1.1. The choice of different side groups results in a large diversity of perylene
compounds, and as a consequence, in quite different properties of their crystalline phases.

An interesting feature of perylene molecules is how their optical properties change
when they form crystalline pigments. When the molecules are dissolved, the mean dis-
tances between them are large enough to consider each monomer to be isolated, so that
its spectroscopic properties can be determined from the internal dynamics of a single
molecule. Irrespective of the different side groups, the dissolved molecules have very sim-
ilar absorption line shapes. This similarity arises from the fact that these molecules have
the same backbone where the optical processes take place, and therefore the spectra are
independent of the size and configuration of the side wings. In the crystal phase, the prox-
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Figure 1.1: Three perylene pigments: Me-PTCDI (N,N-dimethyl-3,4,9,10-perylene-
tetracarboxylic diimide), PB31 (N,N-bis(2-phenylethyl) - perylene-3,4,9,10-bis (dicarbox-
imide)), PR149 (N,N-bis(3,5-xylyl)perylene-3,4,9,10-bis (dicarboximide)).

imity to other molecules results in interactions which include intermolecular transfer of
excitations. The regular arrangement of adjacent molecules into stacks with intermolecu-
lar distances resembling graphite results in substantial interactions between the π-orbitals
of stack neighbors. Since these are the orbitals mainly involved in charge transport and in
the optical response, their intermolecular interactions induce significant changes in these
properties. These features can be exemplified by the spectra of three perylene diimide
molecules in Fig. 1.2. From this figure it is clear that the spectra for dissolved pery-
lene compounds are very similar, but in their crystal phases, the optical properties differ
substantially. Such a dependence of color on crystal packing is a phenomenon known as
crystallochromy. However, even in their crystalline state some perylene materials have
relatively little geometric overlap between neighboring molecules which gives spectra re-
sembling dissolved molecules, e.g. for diindenoperylene (DIP) [11]. In most other cases,
the interactions between adjacent molecules in the crystal phase result in strong modifi-
cations of the optical response [12, 13, 14, 15].

Early studies attempting to derive the color of perylene-based pigments from their
crystal structure were performed using purely phenomenological parameterizations [16].
Hädicke and Graser studied more than twenty crystalline perylene pigments by X-ray
diffraction. They concluded that the color of each pigment is related to both the area of
overlap and the distance between adjacent perylene molecules in the crystal [2, 3]. How-
ever, at this stage, the perylenes were not understood so well that a complete correlation
between structure and color could be established. To get a deeper understanding, theo-
retical models including the transfer of optical excitations have to be developed. Previous
models have contributed significantly to the understanding of excitonic interactions by
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CHAPTER 1. INTRODUCTION

Figure 1.2: Optical spectra for three perylene diimide molecules, (a) in solution and (b)
in their crystalline phase [14].

including small radius neutral excitons, also referred to as Frenkel excitons, and charge
transfer (CT) states.

The purpose of this thesis is to describe the optical properties of molecular crystals by
developing a microscopic model allowing to investigate the impact of the Frenkel excitons
and charge transfer states on the optical properties. We investigate a set of perylene
compounds, all having a perylene backbone but displaying very different optical proper-
ties in their crystalline state. Both for the single molecule and for the molecules in their
crystalline phase, we derive several microscopic parameters from ab initio methods, and
we test their quality on experimental results where this is possible. We find that the
exciton model can reproduce the optical spectra of several different perylene molecules
very accurately, confirming that Frenkel and CT type states mix substantially via elec-
tron transfer and hole transfer. The comparison between calculated and observed optical
spectra allows to deduce the energetic difference between neutral molecular excitations
and CT states within a precision of 0.05 eV. As this difference plays a key role for opto-
electronic applications of molecular semiconductors, the analysis of optical spectra with
a microscopically founded exciton model is of direct relevance for devices.

Furthermore, in order to obtain a more comprehensive picture of the optical properties
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arising for polyaromatic molecules, we investigate the interplay between vibrational modes
and optical response for further molecules with applications in semiconducting devices:
pentacene, rubrene and TPD (N,N ′-diphenyl-N,N ′-bis(3-methylphenyl)-(1,1’-biphenyl)-
4,4’-diamine). For TPD, the substantial Stokes shift can be deduced quantitatively from
the calculations. This parameter is particular interesting since it governs the transparency
to emitted photoluminescence, favoring applications as a lasing material.

This thesis is organized as follows. In Chap. 2 we will discuss the properties of an
isolated molecule, such as vibrations and reorganization energies of excited states, Huang-
Rhys factors, and resonant Raman spectra. In Chap. 3 the crystalline phase of molecular
materials will be discussed, involving intermolecular interactions such as electron and
hole transfer and the optical excitations in a pair of molecules in a stacking geometry
compatible with the crystalline phase. Chap. 4 is devoted to the development of an
exciton model accounting for neutral excitations and intermolecular charge transfer. In
Chap. 5 this approach is applied to several perylene compounds, including a detailed
comparison with observed spectra. The main achievements of this thesis are summarized
in Chap. 6.
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Chapter 2

Molecular properties and quantum
chemical analysis

Since the attraction between the molecules in the crystalline phase arises mainly from
relatively weak van der Waals forces, electronic interactions between adjacent sites remain
rather small. Therefore, the excitations of the crystal can be interpreted as being located
on a single molecule or a pair of molecules. This will simplify the calculations without a
significant loss of accuracy. In this chapter, the single molecule will be examined, including
bond geometries, orbitals, and vibrational modes, covering the key ingredients governing
its optical properties. This including internal vibrations and their Huang-Rhys factors for
neutral excitations, and for anionic and cationic states.

Besides the perylene compounds, this chapter addresses pentacene, TPD and rubrene,
partially as a further test of our method of analysis, and partially because they are popular
organic semiconductors with a wide range of applications.

In this thesis, most microscopic parameters are calculated with ab initio methods, and
a detailed comparison with experimental measurements allows to test the validity of dif-
ferent computational schemes. In the next section we will present theoretical foundations
of the quantum chemical methods used.

2.1 Quantum chemistry and computational methods

Even though experimental measurements and observations are crucial for the field of small
organic molecules, there are shortcomings of this approach and there are mainly two reason
for this. Firstly, the accuracy of experiments depends on the precision of the tools that
are used. Although incredible progress has been achieved there will always be a limit to
which resolution the instruments can detect. Secondly, even though an observation can
be done, it is not certain that one understands the physics behind a particular event.
To compensate these shortcomings researchers have developed analytical and numerical
methods to understand the physical processes on a very fundamental level instruments
cannot reach. Quantum chemistry (QC) is a unifying name for this theoretical approach
using quantum mechanics and quantum field theory applied to molecular systems. QC
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2.1. QUANTUM CHEMISTRY AND COMPUTATIONAL METHODS

has been used for many decades, however, the big revolution came with the development
of the computer and has vastly increased the possible size and complexity of systems that
can be handled. In principle, QC can be an exceptionally precise method, but due to
limitations of time and computational resources, much of the concern in QC is to find
an approximation that can describe the physics as accurately as possible with as little
computational effort as possible. In this thesis, QC calculations are used to approximate
parameters that otherwise would remain unknown because there exists no measurements
for some of the materials investigated. The following section will discuss the most common
QC methods which will be used in the subsequent parts of this thesis to compute molecular
properties.

2.1.1 Hartree-Fock and Slater determinants

The description of the electronic structures of molecules is complex and not yet fully
understood. However, its appearance and properties can be described very precisely
within the quantum mechanical theory by applying a set of simplifying approximations.
If one restricts to smaller atoms, and thus can neglect relativistic effects, the task is to
find approximate solutions of the non-relativistic Schrödinger equation

Ĥ|Ψ〉 = E|Ψ〉, (2.1)

where Ĥ is the full Hamiltonian for a system of nuclei and electrons, and |Ψ〉 is the wave
function describing the system.

The most basic approximation is the Born-Oppenheimer (BO) approximation [17]
which uses the fact that the nuclei have a much larger mass than the electron, with a
mass ratio exceeding 1000:1. Therefore, the nucleus will not relocate itself fast enough
to affect the electronic part of the wavefunction noticeably. From this follows that the
wave function of the electrons can be obtained for fixed nuclei, and the nuclei move on
a potential energy surface determined from the solution of the electronic Schrödinger
equation. In a first step, within this approximation, the kinetic energy of the nuclei
can be neglected and the repulsion between them can be considered constant in Ĥ from
eq. (2.1). The second step addresses the motion of the nuclei in the potential derived
from the electron density, resulting in the vibrational properties. As a results, the BO
approximation allows the total wavefunction |Ψ〉 to be separated into an electronic and
a nuclear wave function. Not including the nuclear part, the formal way to write the
time-independent Schrödinger equation is

Ĥe|Ψe〉 = E|Ψe〉. (2.2)

where |Ψe〉 is the electronic wave function describing the motion of the electrons and Ĥe

is the electronic Hamiltonian:

Ĥe = −
n∑

i=1

h̄2∇2
i

2mi

−
n∑

i=1

M∑

A=1

ZAe
2

4πǫ0riA

+
n∑

i=1

n∑

j>i

e2

4πǫ0rij

(2.3)
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Ψe = Ψe({ri}; {RA}) (2.4)

where ∇2
i is the Laplacian operator, ZA is the the atomic number of nucleus A and rij

is the distance between electrons i and j. The wave function Ψe depends explicitly on
the electron coordinates ri but only parametrically1 on the nuclear coordinates RA. The
nuclear part of Ĥ in eq. (2.1) can be solved under the same assumption as used to for-
mulate the electronic problem. A key feature here is to replace the electronic coordinates
by their mean values, which is averaged over the electronic wave function, using the fact
that the electrons move much faster than the nuclei. Therefore, the nuclei in the BO
approximation moves on a potential surface obtained by solving the electronic problem.

To describe the full interactions among the electrons, it is necessary to define a wave
function for a single particle, or orbital, which includes the spin feature. The spin orbitals
consist of a spatial wave function ψ(r) and an independent spin wave function which can
be either spin up α(σ) or spin down β(σ):

ψi(x) = ψi(r, σ) =

{
ψi(r)α(σ)
ψi(r)β(σ)

(2.5)

The electrons have a spin of 1/2 and the total wave function must be antisymmetric, i.e.
when two electrons change coordinates the sign of the wave function changes. This can be
fulfilled by building the wave function of Slater determinants which are antisymmetrized
product states composed of single particle wave functions ψ called spin orbitals:

ΦSD =
1√
N !

ψ1(x1) ψ2(x1) . . . ψn(x1)
ψ1(x2) ψ2(x2) . . . ψn(x2)

...
...

. . .
...

ψ1(xn) ψ2(xn) . . . ψn(xn)

. (2.6)

The columns in the Slater determinant are single electron functions, or orbitals, and the
rows represent the electron coordinates. When setting two columns equivalent, thus giving
two electrons the same single particle orbitals, the determinant vanishes as required by
the Pauli principle.

From a minimization of the energy of a single Slater determinant, one can derive a
set of equations for single particle spin orbitals. This is commonly referred to as the
Hartree-Fock approximation. Since these single electron orbitals are described as wave
functions, their energy eigenvalues are explicitly related to the orbital they occupy. The
HF approximation concerns only ground state wave functions, but it is a central concept in
quantum chemistry, and it is a common ground for a number of more advanced methods.

It can be shown [18, 19] that the Hartree-Fock equation is an eigenvalue equation of
the form

f̂iψ(xi) = ǫiψ(xi) (2.7)

1In this case parametrical dependence means that for different nuclear geometries RA, Ψe is a different

function of the electronic coordinates ri.

11



2.1. QUANTUM CHEMISTRY AND COMPUTATIONAL METHODS

where f̂i is an effective one-electron operator, called the Fock operator

f̂i = − h̄

2mi
∇2

i −
n∑

A=1

ZAe
2

4πǫ0riA
+ vHF

i , (2.8)

which includes the kinetic energy, the Coloumb interaction of the electrons with the nuclei
and where vHF

i is the Hartree-Fock potential representing the average potential arising
from the presence of the other electrons. As discussed before, in this expression resides the
approximation to remove the many-electron interaction and to replace it by a one-electron
problem. The potential part in the Fock operator depends on the average potential of all
the electrons affecting an electron i so that the electron-electron repulsion is treated in an
average way. Therefore, the Hartree-Fock potential of f̂i depends on the spin orbitals of
the other electrons. In other words the Fock operator relies on the knowledge of the single
particle orbitals of all other electrons. This requires eq. (2.7) to be solved iteratively, a
process which can be very time consuming. This procedure is commonly referred to as the
self-consistent-field (SCF) method, for a more in depth discussion consult e.g. chapter 2
in Ref. [18].

2.1.2 Density Functional Theory

The foundation of Density Functional Theory (DFT) relies on the fact that the total
energy of a many electron system can be expressed as a function of the electron density
alone [20]. This was first shown by Hohenberg and Kohn (HK) [21] using the Born-
Oppenheimer approximation and the variational principle. The base for the use of DFT
methods in computational chemistry are the Kohn-Sham (KS) orbitals [22]. The basic
idea of the KS formalism is to split the kinetic functional into two parts, one that can
be calculated exactly and one small correction term. Since the exact density matrix is
unknown in the KS-theory, the HF approximation is applied, so that the calculation of
the kinetic energy can be performed under the assumption of non-interacting electrons.
Due to the small difference between the exact kinetic energy and the kinetic energy of
non-interacting-electrons, this approximation is still relatively accurate. The general DFT
energy expression can be written as

EDFT [ρ] = TS[ρ] + Ene[ρ] + J [ρ] + Eex[ρ] (2.9)

where TS[ρ] is the kinetic energy calculated as a functional of the electron density, Ene[ρ] is
the attraction between electrons and nuclei, J [ρ] is the functional describing the Coulomb
repulsion between electrons, and Eex[ρ] contains exchange and correlation.

A large advantage over pure Hartree-Fock (HF) methods is that it is not necessary to
solve the wave function, where for HF the cpu time required scales as N4 with the number
of electrons N . Instead, all relevant information can be obtained from the electron den-
sity of the system. Since independently of the number of electrons, the electron density
depends only on three coordinates, the cpu time requirements are considerable reduced.
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However, a potential drawback is that the electron correlation, above the mean field ap-
proximation, is unknown and/or impossible to estimate, so that the error of the exchange-
correlation functional has to be measured and controlled for each class of molecules. On
our class of molecules these tests have been performed by several groups e.g. [23, 24, 25],
so we consider typical exchange-correlation functionals to be quite reliable.

The functional mainly used in this report is the B3LYP (Becke, three-parameter, Lee-
Yang-Parr), which is a hybrid functional [26]. A hybrid exchange-correlation functional is
usually constructed as a linear combination of the Hartree-Fock exact exchange functional
(EHF

ex ) and additional exchange correlation density functionals. Specifically, in B3LYP the
exchange-correlation functional is described as

EB3LY P
ex−corr = ELDA

ex−corr + aHF
ex (EHF

ex − ELDA
ex ) + aB88

ex (EGGA
ex − ELDA

ex ) + acorr(E
GGA
corr − ELDA

corr )
(2.10)

where EHF
ex , ELDA

ex and EGGA
ex are the HF, Local density approximation (LDA), and Gen-

eralized gradient approximation (GGA) exchange [26], respectively, and EGGA
corr and ELDA

corr

are GGA and LDA correlation. The LDA correlation energy ELDA
corr can be determined

by Monte Carlo methods for different densities. After test calculations the empirical
parameters have been set to aHF

ex = 0.2, aB88
ex = 0.72 and acorr = 0.81 [27].

The LDA functionals rely on the homogeneous electron gas, requiring that the electron
density variation is relatively slow. The exchange correlation energy ELDA

ex−corr can be
calculated integrating over the electron density ρ and the exchange-correlation energy
density ǫex−corr

ELDA
ex−corr =

∫

ρ(r)ǫex−corr(ρ)dr. (2.11)

The exchange energy for a uniform electron gas is given by the Dirac formula

ELDA
ex = −3

4
(
3

π
)1/3

∫

ρ4/3(r)dr. (2.12)

For the analytic interpolation formula for LDA, B3LYP uses the Vosko-Wilk-Nusair [28]
correlation, see chapter 6.1 in [19] for a more in depth discussion about this functional.
The GGA is included to consider a non-uniform electron gas where the exchange and
correlation is calculated from the derivatives of the electron density. The reason for
including it is that it compensates for the tendency of LDA to overestimate the total
binding energy, or so-called overbinding.

We have chosen to use DFT with the B3LYP functional for our ground state calcu-
lations since this functional is very accurate and allows to describe the wave functions
[29] which gives excellent agreement with observed molecular geometries and measured
frequencies of vibrational modes [26, 33, 34] with relatively low computational effort.
B3LYP has proven to be very reliable when calculating the ground state properties of, for
example, naphthalene, anthracene, perylene, and terrylene [30, 31, 32] which are closely
related to our materials. The calculations were performed with the Turbomole 5.9

program package developed by Ahlrichs et al. [35, 36, 27].
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2.1.3 Excited state calculations

For the excited states calculations two methods were applied, the time-dependent DFT
(TD-DFT) [37, 38, 39] method and a constrained DFT method. As the name implies
TD-DFT extends the concept of DFT to time-dependent situations arising for elec-
tronic excitations. This method relies on the statement that any interacting quantum
system subject to an arbitrary time-dependent potential can be described by the time-
dependent Schrödinger equation. It can be determined completely by knowledge of the
time-dependent density of the system at a given time [20]. Thus all the physical variables
are dependent on the density, and this relation makes it possible to derive information
on the particle-to-particle interaction by looking at a density-dependent single-particle
potential. This allows to study the time evolution of an interacting system by solving a
time-dependent auxiliary single-particle problem

ih̄
∂Ψ(x, t)

∂t
= Ĥ(t)Ψ(x, t). (2.13)

The other method used to describe the lowest excited state is a constrained DFT
(c-DFT) approach which allows to pick specific electronic configurations to be excited
by setting noccupied = nvirtual = 1. This approach of applying DFT is covered by the
Hohenberg-Kohn theorem [21]. In the molecules we are studying the lowest optical tran-
sition is dominated by the HOMO to LUMO excitation so that the c-DFT method can
provide a good approximation of this transition. A schematic visualization of the elec-
tronic configurations investigated with the three different variations of DFT can be found
in Fig. 2.1.

2.1.4 Basis sets

A variational basis set is a set of functions used to describe, for example, the molecu-
lar orbitals (MO). The MO are expanded as linear combination of basis functions, usu-
ally atomic orbitals, for example Slater Type Orbitals (STOs) or Gaussian Type Orbitals
(GTOs). In the ideal case, which describes the orbital exactly, the set of functions is com-
plete, which means it contains an infinite number of functions. This is of course impossible
to manage, so the selection of a basis set should fit both the accuracy expectations and
available resources in terms of computational power and cpu time.

The two types of basis functions have different advantages. The STO has an expo-
nential dependence on the distance, e−ξr, while the GTO has a e−ξr2

dependence which
makes the GTOs inferior to the STOs in two ways. At the nucleus, the GTO has a zero
slope, while the STO has a discontinuous derivative, or a “cusp”, so GTOs have problems
representing the behavior near the nucleus. The other drawback with a GTO is that is
falls off too rapidly far from the nucleus, and the tail of the wave function is represented
poorly. In order to compensate for these shortcomings, several GTOs are superimposed,
up to three per STOs. Nevertheless, since the GTOs require much less computational
power they are actually preferred over STOs in our type of configurations.
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Figure 2.1: Left: visualization of electronic configurations treated with DFT, middle:
lowest excited singlet, as obtained with TD-DFT, right: lowest excited electronic configu-
ration obtained with the constrained DFT approach. The arrows represent electrons with
either spin up or spin down and the horizontal lines the electronic orbitals, both occupied
and unoccupied.

The simplest possible level of basis set corresponds to the lowest number of functions
required to describe all occupied atomic orbitals. This minimal basis set is named STO-nG
(where each Slater orbital required is expressed by a superposition of n Gaussians) for the
program package Gaussian where the n in STO-nG represents the number of primitive
Gaussian functions representing an atomic orbital. The minimal basis set is too small
to be particularly useful for quantitative use, however, the chemical bonds are described
correctly, so that it becomes a suitable starting point for increasing the size of the basis
set. For Turbomole, the SV contractions are obtained from an atom-optimized single-ζ
(SZ) basis set by decontracting valence atomic orbitals. SV contains two uncontracted
Gaussian-type orbitals (GTOs) in the valence shell, and the orbitals in the inner shells
are described by a single basis function.

In Turbomole, the more accurate basis functions are called Double-ζ (DZ) [40],
Triple-ζ (TZ) and Quadruple-ζ (QZ) [41]. They represent the order of increase in functions
compared to the lowest basis set, so DZ contains approximately the double amount of
basis functions compared to the SZ basis function, and similar reasoning applies to the
others. As an illustration, for the carbon atom the basis set for SV in general notation
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is (10s,5p)/[4s,1p], for DZ it is (11s,5p)/[6s,2p] and for TZ it is (12s,6p)/[7s,2p] where
“(...)” stands for GTOs and “[...]” contracted-GTOs (CGTOs) [40].

There is also an option to add valence polarization (VP) functions which include the
polarization for the valence electrons of the atoms. The polarization can arise from non-
symmetric interactions between the valence electrons. A basis set with double-ζ functions
including valence polarization functions will then be abbreviated DZVP.

2.2 Theory of spectroscopic observables

The optical properties of a molecule depend directly on its internal vibrations and their
elongations in the relaxed excited geometry. The Stokes shift, which determines the
difference between absorption and emission, and the absorption and PL spectrum itself
are related to internal vibrational modes. In order to study the optical properties of an
isolated molecule an effective method is to dissolve the molecules in a fluid at sufficiently
low concentration, so that intermolecular interaction between molecules of the same kind
are replaced by random solute-solvent interactions. By doing this it is possible to get
optical spectra which will resemble very accurately the one of a single molecule [12, 15]. In
an absorption spectrum, the relative height of the peaks is proportional to the probability
of transfer between the ground state and a specific vibronic level in the excited state. This
section will summarize the theoretical foundations on which our calculated parameters
are based on.

2.2.1 Displaced harmonic oscillator

To describe the theory behind the optical spectra in terms of transition energies and
intensities, we use the harmonic approximation. The system in its electronic ground state
can be described by the Hamiltonian for a harmonic oscillator

Hg =
p2

2m
+
mω2

2
x2 = (a†gag +

1

2
)h̄ω (2.14)

where a†g (ag) is the creation (annihilation) operator of a vibration in the electronic ground
state

a†g =
1√
2

(
√
mω

h̄
x+

√

h̄

mω

∂

∂x

)

(2.15)

ag =
1√
2

(
√
mω

h̄
x−

√

h̄

mω

∂

∂x

)

. (2.16)

For vibrational modes with h̄ω >> kBT , only the lowest vibrational level |0g〉 in the
electronic ground state is occupied. In this report we will only include the lowest excited
electronic configuration, but vibrational levels are unrestricted. For a large molecule
with several internal vibrations, the deformation pattern in the relaxed excited geometry
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projected onto the complete set of vibrational eigenvectors defines a coordinate shift q0
for each mode and a vibronic coupling constant g

g =

√
mω

2h̄
q0. (2.17)

The reorganization energy can be written as a function of the vibrational coupling constant

λ = g2h̄ω = Sh̄ω, (2.18)

where S is known as the Huang-Rhys factor. The creation and annihilation operators
in the displaced harmonic potential associated to an excited state are related to the
respective operators in the electronic ground state and the vibronic coupling constant:

a†e = a†g − g (2.19)

ae = ag − g (2.20)

According to Glauber [42], these relations allow to express the lowest vibrational level
in the electronic ground state by a superposition of the vibrational levels in the excited
state:

|0g〉 = e−g2/2e−ga†
e |0e〉 = e−g2/2

∞∑

ν

(−g)ν

ν!

√
ν!|νe〉. (2.21)

As a result, all Franck-Condon factors 〈νe | 0g〉 can be read off as 〈νe|0g〉 = e−g2/2 (−g)ν

√
ν!

, so
that the relative intensities in the vibronic progression are given by a Poisson progression.

The overlap between a displaced oscillator function with quantum number ν and the
quantum number µ in the ground state potential was first discussed by Franck [43] and
later by Condon, hence named the Franck-Condon overlap factor. The Franck-Condon
factor describes the overlap between two vibronic functions, one in the electronic excited
state |χeν〉 and one in the electronic ground state |χgµ〉. The relative contribution of
different vibronic sublevels to the optical excitation of the monomer is given by the square
of the Franck-Condon overlap factors, which can be obtained (see Appendix A for details)
using the operators stated

Sµν = 〈χgµ | χeν〉 = 〈 1√
µ!

(a†g)
µχg0 | 1√

ν!
(a†g − g)νe−g2/2eg(a†

g)χg0〉 =

=
e−g2/2

√
ν!µ!

min(ν,µ)
∑

i=0

(−1)ν−igµ+ν−2iµ!ν!

i!(µ− i)!(ν − i)!
. (2.22)

When the transitions start from the lowest vibrational level |χ0g〉 in the electronic
ground state to an arbritary vibronic level |χνe〉 in the electronic excited state, the squared
overlap can be expressed as

S2
0gνe

= |〈χνe|χ0g〉|2 = e−SS
νe

νe!
= Pνe

(S) (2.23)
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where Pνe
is a Poisson progression with argument S = g2. These equations show that the

size of the Huang-Rhys factor defines the overlap between |χ0g〉 and vibronic levels |χνe〉,
hence the larger the overlap the larger the probability of a transition to that state. If
the factor S is less than 1.0, the zero-to-zero vibronic transition is most probable and the
probability decreases for each transition higher level. Therefore, for S < 1, we can restrict
our model to include only a small number of vibronic levels without receiving measurable
deviations from completeness. E.g. when the highest mode included is νe = 8, for S = 1
the smallest probability included is S2

0gνe
= |〈χνe|χ0g〉|2 < 10−5, according to eq. (2.23).

2.2.2 Solution spectra

A simple picture for the vibrational levels and their relation to the optical spectra can
be sketched as in Fig. 2.2. The thermal motion of the solvent molecules modulate
the electronic transition energy, giving rise to a broadening of the peaks. The width
of the peaks is described by Gaussian functions, so the contribution of each sublevel to
the dielectric function of a dilute solution is modelled with a normalized Gaussian. By
using this scheme the energy spacing h̄ω and the Huang-Rhys factor S can be extracted
from measurements by fitting the observed spectra to a Poisson progression with variable
Gaussian broadening [11]

ℑ(ǫ) = ǫ2 = y0 + A0

νmax∑

ν=0

Sν

ν!σν

√
π
e−(E−Eν

σν
)2 , (2.24)

where y0 is an offset, A0 is the amplitude, Eν the energy and σν the width of the νth
Gaussian corresponding to a broadened 0 − ν transition.

The absorption is directly related to the dielectric function of the material and at
sufficiently low concentration the influence of the solute on the refractive index of the
solution can be neglected, so that the observed absorption coefficient can then be written
as

α(E) =
E

h̄c

ℑ(ǫ)

nsolvent

. (2.25)

2.2.3 Raman spectroscopy of organic molecules

In order to verify our ab initio calculations we will compare the results to Raman data.
Therefore, in the following, the relation between Franck-Condon factors and Raman spec-
tra will be described.

The Raman theory applies the specific attributes of a molecule, including bond lengths,
bond types and atomic mass in order to extract information on the scattering cross section
of specific vibrations. A laser exciting a molecule will mostly render elastically scattered
photons, so called Rayleigh scattering. However, a small fraction of the photons, about 1 in
107, will give a molecule-specific inelastic scattering pattern. This process is named Raman
scattering effect after its discoverer [44]. The energy difference between the incident
photon and the scattered photon corresponds to the energy of the molecular vibration
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Figure 2.2: Relation between vibronic levels and optical spectra. The left picture is a
visualization of the excitations of a single molecule and how they correspond to the optical
spectra shown besides. The right picture is modelled with Gaussians superimposed to an
experimental spectrum of DIP using a Huang-Rhys factor of S = 0.87 and an effective
mode of h̄ωeff = 0.17 eV [11], with variable Gaussian broadening.

that has scattered the photon. Thus the Raman spectrum is a plot of relative intensity
as a function of energy difference. The scattering process can be divided into two steps,
the first is an excitation when the molecule is excited from the initial state |i〉 to a virtual
state |m〉, the second step is the recombination to the final state |f〉. |m〉 represents any
state that has a transition dipole coupling it to |i〉 and |f〉. In the following, we will
restrict the discussion to the excitation of a single internal vibration k after the scattering
process. The three states are defined as

|i〉 = |g〉
∏

j

|0g
j〉 (2.26)

|m〉 = |e〉|me
k〉

∏

j 6=k

|me
j〉 (2.27)

|f〉 = |g〉|1g
k〉

∏

j 6=k

|0g
j〉. (2.28)

A schematic view of the transitions involved is depicted in Fig. 2.3. The states can
be compared with the single vibrational modes in Sec. 2.2.1. However, for readability
the notation for multi-vibrational states will be somewhat altered, therefore state |ng

j〉
corresponds to state |χng〉, and similar for the excited state, throughout this section. The
energy difference between |i〉 and |f〉 vibrational levels can be expressed as

Eshift = Ef −Ei (2.29)
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Figure 2.3: Visualization of the transfers involved in resonance Raman scattering.

where Ei is the energy of the photons in the laser and Ef is the energy of the scattered
photons. In aromatic molecules, some typical Raman active modes include C-C stretching
modes in the region 1300-1600 cm−1 and C-H bending modes in the range 1000-1300
cm−1. Typically, at smaller energies, one finds breathing modes where the entire molecule
is expanded or compressed in phase, so that the elongation pattern resembles acoustic
phonons of graphite, with a wavelength corresponding to twice the size of the molecules. A
more detailed discussion is contained in earlier work on resonant Raman theory published
in the 1970s [45, 46, 47].

In the harmonic approximation the intensity of a Raman band is determined by the
derivative of the polarizability with respect to a normal coordinate:

R ∝
(
∂α

∂q

)2

. (2.30)

A non-linear molecule composed of n atoms has 3n− 6 normal modes of vibration. How-
ever, in experimental setups not all of them are visible, many modes have zero or negligible
intensity due to selection rules giving vanishing derivatives in eq. (2.30). If a given vibra-
tion does not affect the polarizability, according to eq. (2.30), the Raman band will also
be negligible. In order to see asymmetric stretching modes one can apply e.g. infra red
(IR) spectroscopy.
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The cross section is the probability of observing a scattered photon in a given quantum
state at a given angle. For resonant Raman the cross section is expressed as [48, 49, 46, 50]

dσ(ωL)

dΩ
=

∑

f

ωLω
3
S

16π2ǫ20h̄
2c4

·

∑

i

Pi ×
∣
∣
∣

∑

m

[
〈f |eS · µ̂|m〉〈m|eL · µ̂|i〉
ωm − ωi − ωL − iγ

+
〈f |eS · µ̂|m〉〈m|eL · µ̂|i〉
ωm − ωi + ωL + iγ

]
∣
∣
∣

2

, (2.31)

where ωL is the incident laser photon frequency and ωS is the frequency of the scattered
photons and ωm and ωi are the frequencies of the intermediate and initial state, respec-
tively. µ̂ is the dipole operator that connects the intermediate vibrational level |m〉 in the
excited electronic state to the electronic ground state, and γ is the inverse of the dephas-
ing time. If we limit the model to vanishing temperature, only the lowest vibrational level
|i〉 in the electronic ground state |g〉 occurs with the probability Pi = 1 and therefore the
sum over initial states can be skipped. An overview visualizing the states involved in eq.
(2.31) is visualized in Fig. 2.3.

Under the assumption that the transition dipoles are independent of the positions of
the atoms, the matrix elements in eq. (2.31) can be decomposed into contributions of
different internal modes,

〈m|µ̂|i〉 = µeg〈me
k|0g

k〉
∏

j 6=k

〈me
j |0g

j〉 (2.32)

〈f |µ̂|m〉 = µge〈1g
k|me

k〉
∏

j 6=k

〈0g
j |me

j〉, (2.33)

where µeg = 〈e|µ̂|g〉 is the transition dipole and similar for µge. According to [50] the
overlap factors of the vibrational mode excited by the scattering process are defined as

〈1g
k|me

k〉〈me
k|0g

k〉 = e−Sk

√

Sk
S

me
k

k −me
kS

me
k
−1

k

me
k!

(2.34)

where Sk is the Huang-Rhys factor of the mode k excited after the scattering process. As
the other modes, j 6= k, return to their vibrational ground states, they give a contribution
similar to the Franck-Condon factor in absorption:

|〈me
j |0g

j〉|2 =
e−SjS

me
j

j

me
j !

. (2.35)

For the denominator in eq. (2.31) we can rewrite the excitation frequency since we let
the intermediate excited state |m〉 be able to contain an arbitrary number j of excited
quanta of several internal modes

ωm − ωi = ω00 +me
kω

e
k +

∑

j 6=k

me
jω

e
j (2.36)
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where, for simplicity, we assume vanishing Dushinsky rotation so that the vibrational
mode of the ground and excited state coincide ωk = ωe

k = ωg
k. The full denominator can

now be rewritten using a detuning δ

δ = ω00 +
∑

j 6=k

me
jωj

︸ ︷︷ ︸

ωm−ωi−me
k
ω

k

−ωL. (2.37)

For off-resonant or pre-resonant laser line, the ratio between me
kωk and δ is small. This

allows to expand the denominator in eq. (2.31) into a Taylor series

1

ωm − ωi − ωL − iγ
=

1

δ

1

1 +
me

k
ω

k

δ

≈ 1

δ

(

1 − me
kωk

δ

)

. (2.38)

By replacing the numerator and denominator in eq. (2.31) by eq. (2.34) and the Taylor
expansion, it is clear the the zero order term in the Taylor expansion gives a vanishing
contribution. The first order term yields

e−Sk

√

Sk

∑

me
k

me
kωk

δ2

S
me

k

k −me
kS

me−1

k

k

me
k!

= e−Sk

√

Sk
ωk

δ2
eSk =

√

Sk
ωk

δ2
. (2.39)

This gives then a cross section proportional to

dσ(ωL)

dΩ
∝ Skω

2
k〈

1

δ2
〉2. (2.40)

At finite temperature there will be an increase in cross section due to the thermal occu-
pation of each mode according to

dσ(ωL)

dΩ
∝ Skω

2
k[1 + nth(h̄ωk, kBT )]〈 1

δ2
〉2. (2.41)

In the case of the fully resonant case the Taylor series expansion used in eq. (2.37) is not
applicable and the cross section has a more complex resonance profile. Since the cross
section is proportional to 〈 1

δ2 〉2, it shows a large resonance enhancement of the Raman
signal when the detuning from full resonance is decreased.

From eqs. (2.40) and (2.41) it is clear that the cross sections are proportional to their
Huang-Rhys factor. Therefore, the decomposition of the calculated deformation in the
relaxed excited geometry of a molecule into contributions of different internal modes allows
for a quantitative comparison between measured and calculated Raman cross sections.

Molecules with a specific symmetry can be classified into different point groups. This
geometry remain will be unchanged under all the symmetry operations of that group. The
molecules investigated in the following belong to either the D2h or C2h point group. Dn

represents the dihedral group which is the group of symmetries of a regular polygon with n
undirected sides, and Cn represents the cyclic group of a regular polygon with n directed
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sides. A molecule with D2h (C2h) symmetry has 8 (4) irreducible representations, but
only Ag modes are elongated when the molecule is excited, resulting in a non-vanishing
Huang-Rhys factor. As the elongation of the Ag modes of rectangular D2h-symmetric
molecules is intimately related to the vibronic progression in absorption and PL, in the
following we will mainly concentrate on computational schemes addressing these modes.
Bg modes are Raman-active too, but they can only be excited if their elongation changes
the transition dipole µeg = 〈e|µ|g〉 between the electronic states involved in the virtual
transition, so that most of these modes have Raman cross section much smaller than the
Ag modes.

2.3 Perylene compounds

The main aim of this thesis is the development of a comprehensive exciton model for
molecular crystals. Due to very detailed experimental studies of various crystalline pig-
ments based on perylene compounds, this specific class of organic semiconductors will
be used for validating this exciton model. In order to have a sound basis for these
methological developments, we need to start from the photophysics of the respective
molecules. The following set of perylene chromophores will be addressed: 3,4,9,10-
perylene tetracarboxylic dianhydride (PTCDA, pigment classification name red pigment
PR224), 5,15-Diaza-6,16,dihydroxy- tetrabenzo[b,e,k,n]perylene (DDTP) N,N-dimethyl-
3,4,9,10-perylene-tetracarboxylic diimide (red/maroon pigment PR179 or Me-PTCDI),
N,N-bis(3,5-xylyl)perylene-3,4,9,10-bis (dicarboximide) (red pigment PR149), N,N-bis(2-
phenylethyl) - perylene-3,4,9,10-bis (dicarboximide) (black pigment PB31), 3,4,9,10-pery-
lene-bis(dicarboximide) (PTCDI, violet pigment PV29) and diindenoperylene (DIP), for
a visualization see Fig. 2.4. The bold font indicates under which abbreviation they will
be referred to in the subsequent parts of this thesis. The molecules, except for DDTP and
DIP, share a common geometrical feature, which is the perylene backbone surrounded
by two identical functional groups involving oxygen (PTCDA) or an imide group with a
sidegroup of varying size, ranging from a hydrogen atom (PTCDI) to a larger extension
consisting of e.g. -CH2-CH2-phenyl (PB31). In all these cases the HOMO and LUMO
have a node plane along the long axis, so that the size of the sidegroup has little effect on
the optical properties of each chromophore. This can be verified by studying the spectra
of dissolved molecules, which show great similarities, consolidating the idea that the side
wings have a small influence on the frontier orbitals and thus the optical properties in the
single molecule.

2.3.1 Molecular properties

PTCDA

PTCDA is a well investigated planar molecule consisting of 38 atoms, compare Fig. 2.4.
It can crystallize in two monoclinic bulk phases, called α and β. The point group of the
isolated molecule is D2h, while the experimental PTCDA geometry in the crystal shows
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Figure 2.4: Perylene compounds studied in the present work PTCDA, Me-PTCDI, PB31,
PTCDI, PR149 and DIP. The plus signs indicates where the sidegroups are attached. For
clarity, the side wings in PB31 and PR149 are rotated by 90◦ after the first connection.

some deviations from the full D2h symmetry due to distortions of the anhydride groups.
In the PTCDA monomer, the lowest transition at 2.44 eV is the strongest one, with
oscillator strength fosc = 0.657 calculated with a B3LYP/TZ scheme. Further prominent
transitions have energies 3.65 eV (fosc = 0.076) and 5.57 eV (fosc = 0.517).

DDTP

The DDTP molecule deviates from the other perylene compounds in several respects.
First, the polyaromatic structure is extended by an additional hexagonal ring attached
to each corner of the perylene core, second, along the long axis of the core, there is
no additional ring like in the six compounds analyzed, and third, two OH groups are
attached to the perylene part. As a result, this compound looks like two pentacene
molecules crossing each other at an angle of 60◦, with two additional OH groups attached
to one of them.

24



CHAPTER 2. MOLECULAR PROPERTIES AND QUANTUM CHEMICAL

ANALYSIS

Figure 2.5: Perylene compound DDTP.

DDTP is a violet/purple pigment based on the diaza-perylene skeleton with 56 atoms,
compare Fig. 2.5. It was found to exhibit two distinct colors in evaporated films: violet
and reddish-purple. In the DDTP monomer, the lowest transition at 2.14 eV is the
strongest one, with oscillator strength fosc = 0.594 calculated with a B3LYP/TZ scheme.

Me-PTCDI

The Me-PTCDI molecule consists of 46 atoms and the point group of the isolated molecule
is C2h. B3LYP/TZ calculations show a very strong lowest excitation at 2.40 eV with Bu

symmetry (fosc = 0.728) and a weaker one at 3.73 eV (fosc = 0.110), see Table 2.1.

transition energy (eV) fosc (1)
1Bu(x) 2.403 0.728
1Au(z) 3.062 0.000
2Bu(y) 3.446 0.000
2Au(z) 3.553 0.000
3Bu(y) 3.725 0.110
3Au(z) 4.592 0.000
4Bu(y) 4.746 0.066
5Bu(y) 4.828 0.000
6Bu(x) 4.920 0.037

Table 2.1: Lowest dipole-active transition energies for Me-PTCDI in C2h geometry. Bu

π → π∗ transitions have their transition dipole along the long (x) and short (y) axis of
the molecule, and π → σ∗ transitions along the molecule normal (z).
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DIP

DIP has two indeno groups in the planar aromatic region, resulting in a spreading of
HOMO and LUMO over the entire molecule [11]. Nevertheless, the larger extension of the
DIP frontier orbitals compared to the other molecules does not give rise to a significant red
shift with respect to the other compounds. The crystal state of DIP is radically different
from the others in this group of perylene compounds since the geometric overlap between
stack neighbors is much smaller than for the others. However, the ordering in its crystal
phase is very well defined and it has been found to give rise to a rather high mobility
of charge carriers [51, 52, 53]. TZVP calculations for a single DIP give the strongest
transition 1B1u(x) at 2.347 eV with an oscillator strength of fosc = 0.764. Between the
lowest transition and 4 eV, the calculations give some relative weak transitions, but above
4 eV there are several strong transitions, all with transition dipoles along the long axis of
DIP.

transition energy (eV) fosc (1)
1B1u(x) 2.347 0.764
1B2u(y) 2.970 0.001
2B2u(y) 3.711 0.036
2B1u(x) 3.944 0.051
3B2u(y) 3.995 0.022
3B1u(x) 4.220 0.587
4B2u(y) 4.308 0.059
4B1u(x) 4.514 0.640
5B2u(y) 4.809 0.070
5B1u(x) 4.908 0.321

Table 2.2: Lowest dipole-active transition energies for DIP in rectangular D2h geometry.
B1u π → π∗ transitions have their transition dipole along the long (x) axis of the molecule,
and B2u π → π∗ transitions along the short (y) axis. B3u transitions with transition dipole
along the molecule normal (z) do not occur in the energetic range reported. The lowest
dipole-forbidden transition 1B1g at 2.333 eV is nearly degenerate with the 1B1u HOMO-
LUMO transition.

Allowing for a typical solvent shift of −0.15 eV, the lowest calculated dipole-active
1B1u transition would be red-shifted to a vertical transition energy of about 2.2 eV in
solution, or about 0.3 eV below the observed vertical transition energy 〈E〉 = 2.50 eV.
This rather small deviation indicates that gap estimates for DIP based on the hybrid
functional B3LYP with its admixture of exact exchange are more reliable than pure density
functionals [54], in agreement with previous studies of transitions in aromatic molecules
[23].
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2.3.2 Effective vibrational mode in solution spectra

In solution, the energetic distance between subsequent vibronic bands is found to be
constant over the lower vibronic levels. In this work we treat only the lowest few vibronic
levels of the oscillations, so that the potential can be approximated by a parabolic shape
corresponding to a harmonic oscillator. In order to simplify calculations, a single effective
mode of h̄ωeff is introduced, replacing several high-frequency internal vibrations elongated
in the relaxed excited state of a molecule. h̄ωeff then corresponds to the energetic difference
between vibronic subbands in the optical absorption of dissolved molecules [13]. Assuming
that this is a valid approximation, the energy difference between the lowest vibronic level
in the ground state and an arbitrary vibronic level νe in the excited state would then be

E0νe
≈ E00 + νeh̄ωeff . (2.42)

where E00 is the distance between the two lowest vibronic levels of each electronic state.
The fitting procedure gives vibronic subbands which are approximately equally spaced,

E0n ≈ E00 + nh̄ω, and the experimental effective mode reported in Table 2.3 is defined
as h̄ω = (E02 −E00)/2. The fits of the observed spectra demonstrate that the sidegroups
have only a marginal influence on the optical response.

2.3.3 Calculation of effective internal mode

The effective vibrational modes for the perylene compounds were calculated using TD-
DFT and c-DFT with B3LYP as functional and TZ as basis set. The ground state
vibronic modes were used, this can be done since we assume that the molecular geometry
is conserved on the time scale of the electronic transition according to the Franck-Condon
principle. We found calculated values of approximately h̄ω=0.17 eV for all compounds,
the exact calculated values can be found in Table 2.3.

Our analysis of experimental spectra with a calculated vibronic effective mode results
in good agreement. For PTCDA, the measured value h̄ωexp = 0.172 eV compares well
with the calculated one of h̄ωcalc = 0.171 eV and for Me-PTCDI, a measured value of
h̄ωexp = 0.173 eV is well reproduced by the calculated value h̄ωcalc = 0.170 eV. For DIP,
the results can be compared to measurements made by Heinemeyer et al. where the
measured value in solution can be estimated to h̄ωexp = 0.167 eV [11], again in good
agreement with the calculated value of h̄ωcalc = 0.165 eV. For PTCDI and DDTP, we
have no data from measurements, but as the other compounds show a maximum deviation
between calculated and experimental effective mode of only a few meV, we can assume
that the calculated value for them are realistic.

2.3.4 Geometry optimization and reorganization energies for
different electronic configurations

The geometric structure of a molecule depends on its electronic configuration and therefore
a deformation in an excited state arises in a natural way from the minimum of the new
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compound c-DFT exp.
h̄ω h̄ω
eV eV

PTCDA [15] 0.171 0.172
DDTP 0.167
Me-PTCDI [15] 0.170 0.173
PB31 [14] 0.170 0.169
PTCDI 0.175
PR149 [14] 0.170 0.170
DIP [11] 0.165 0.167

Table 2.3: Effective internal vibration for the perylene compounds obtained with con-
strained DFT at the B3LYP/TZ level, scaled by a factor of 0.973 adequate for this func-
tional [34]. The experimental values are obtained from a fit to solution spectra according
to eq. (2.24).

potential energy surface associated to the new configuration. The deformation is directly
related to the bonding and anti-bonding regions of the frontier orbitals. As an explanation
of the deformation after exciting a HOMO electron into the LUMO, for Me-PTCDI these
orbitals are displayed in Fig. 2.6 together with the resulting deformation. Since the
excitation transfers one valence electron from the HOMO to the LUMO, the horizontal
bonds in the central rings will get stronger and contract the molecule in this direction
while the molecule loses binding strength in the vertical direction. The molecule as a whole
tends to become shorter and broader, and this is generally true for all of our perylene
compounds because of their similar backbone. For calculations of the excited states we use
both the TD-DFT and the c-DFT method. For both approaches the deformation patterns
are similar, but the size of the deformation of TD-DFT is significantly smaller. For the
optimization for the charged states we have used DFT where nHOMO = 2, nLUMO = 1
corresponds to the anion and nHOMO = 1, nLUMO = 0 corresponds to the cation.

Immediately after a transition to an excited state the molecule has its ground state
geometry configuration according to the BO approximation. The reorganization energy
λ is defined as the difference in energy between vertical excitation from the ground state
geometry and the energy in the relaxed excited state. Our calculations show that the
reorganization energy for the neutral excited states are higher than for the ionic states,
and the anionic state has a higher value than the cationic state, thus λ > λ− > λ+, see
Table 2.4.

2.3.5 Huang-Rhys factors for neutral excited molecules and ion-
ized states

When analyzing the spectra from dissolved chromophores, the various internal vibra-
tions are not resolved, but instead they merge into a single vibronic progression with a
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Figure 2.6: LUMO (top), HOMO (middle) and deformation in the relaxed excited elec-
tronic state (bottom) of Me-PTCDI. The deformed geometry is visualized by the open
circles with a scaling factor of 30 and the ground state relaxed geometry is represented
by the filled and colored circles. The relaxed geometry has been calculated with the
constraint nHOMO = nLUMO = 1 at the B3LYP/TZ level.

large Gaussian broadening coming from geometric fluctuations of the surrounding solvent
molecules. By a projection of the deformation patterns onto the vibrational eigenvectors
one can define individual Huang-Rhys factors for each internal Ag mode. In a second
step, several strongly elongated modes in the region 900 and 1800 cm−1 are replaced by
an effective mode with an effective Huang-Rhys factor:

S =
∑

j

Sj (2.43)

h̄ω =
1

S

∑

j

Sjh̄ωj (2.44)

This scheme is applicable to both ionized and excited states since the energies of the effec-
tive modes deduced from the different deformation patterns are quite similar. However, in
ionized states, the deformation is generally smaller, which results in smaller Huang-Rhys
factors than for a neutral excited state.
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cation anion c-DFT TD-DFT
λ+ λ− λ λ
eV eV eV eV

PTCDA 0.068 0.127 0.180 0.112
DDTP 0.095 0.103 0.162 0.113
Me-PTCDI 0.074 0.131 0.177 0.110
PB31 0.038 0.137 0.178 0.110
PTCDI 0.069 0.119 0.171 0.110
PR149 0.039 0.128 0.174 0.109
DIP 0.055 0.104 0.188 0.121

Table 2.4: Reorganization energies for the molecules in their relaxed geometries in the
cationic, anionic, and neutral excited electronic configurations. The values are calculated
at the B3LYP/TZ and they are unscaled.

For the studies of a single molecule we use a well converged triple-ζ variational basis
for the electronic orbitals [41] with DFT, TD-DFT and constrained DFT. For molecules
with a relatively small number of valence electrons this basis is expected to show good
agreement with experimental results. In order to validate the calculated Huang-Rhys
factors we have performed rigorous studies of the vibrational modes in molecules and
compared them with experimental results.

We found that the constrained theory estimates accurately the effective Huang-Rhys
factors, while TD-DFT tends to underestimate its values. In general the effective Huang-
Rhys factor calculated with the constraint nHOMO = nLUMO = 1 is overestimated by
less than 10 %, while TD-DFT underestimates it by up to 30 % compared to observed
values extracted from solution spectra. This gives a motivation to use the constrained
DFT values when calculating the parameters used for the exciton model in Chap. 4.
For the internal vibrations of aromatic molecules, it is common practice to reduce the
values obtained with the B3LYP functional by a scaling factor of 0.973 [34]. This factor
comes from problems handling the electron correlation, neglect of the anharmonicity of
the potentials, and/or basis set truncation, resulting in an overestimate of the vibrational
modes. When keeping the reorganization energies fixed, this gives a rescaling of the
Huang-Rhys factor by 1/0.973.

While information on neutral excited states for perylene molecules is relatively easy to
find, measurements on the anionic and cationic states and their spectra are more scarce.
However, earlier experimental work on photoionization spectra of pentacene, interpreted
with DFT [55], was showing that B3LYP calculations reproduce these results for anionic
states well. This serves as a motivation to trust the calculated deformations of ionized
states. In all cases, we find that the reorganization energy of the positively charged ionized
state is smaller than for the anionic state, and that the relaxed excited state is deformed
even more, fulfilling S > S− > S+ for the molecules, just like for the total reorganization
energies, and the approximate sum rule S−+S+ ≈ S. The calculated Huang-Rhys factors
can be found in Table 2.5. In the next subsections we discuss the results based on the
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compound cation anion excited
S+ S− S
1 1 1

PTCDA 0.35 0.65 0.88
DDTP 0.38 0.46 0.72
Me-PTCDI 0.34 0.62 0.87
PB31 0.17 0.64 0.87
PTCDI 0.28 0.55 0.82
PR149 0.19 0.73 0.88
DIP 0.31 0.56 0.90

Table 2.5: Huang-Rhys factors S− and S+ of the ionized states obtained with DFT, and
the Huang-Rhys factor in the relaxed excited geometry with constrained DFT, all at the
B3LYP/TZ level. All values have been scaled by 1/0.973.

theory introduced in Sec. 2.2.

PTCDA

Earlier works on PTCDA calculated with DFT reports values of S+ = 0.72 and S− =
0.34 indicating a distribution of reorganization energies consistent with S+ > S− [56].
Hoffmann et al. found S = 0.77 for PTCDA which was obtained from solution spectra
of Me-PTCDI where the absorption spectrum of PTCDA was identical within graphical
accuracy [57]. Their Huang-Rhys factors for ionized states where assigned to half of the
value of the neutral state, S+ = S− = S/2.

PTCDA has 108 internal vibrational modes including 54 Raman- and 46 infrared-
active modes. Their calculated individual contribution to the Huang-Rhys factors can
be found in Table 2.6 where the B3LYP calculation gives a scaled Huang-Rhys factor of
S = 0.88 for the excited state, and for the ions S− = 0.65 and S+ = 0.35, with two
large contributions from modes at 1299 and 1552 cm−1, see Table 2.6. The value for S is
within the range of previous estimates between 0.77 [59, 13] and 1.18 [60]. The individual
Huang-Rhys factors of the breathing modes compare favorably with measured Raman
cross sections [60], compare Fig. 2.7 for a visualization.

Me-PTCDI

A single molecule of Me-PTCDI has 138 internal vibrations of which 6 are silent, 66
infrared-active and 66 Raman-active and their individual calculated contribution to the
Huang-Rhys factor and their vibronic modes can be found in Table A.1. The results show
one large contribution for a mode at 1299 cm−1 and one at 1552 cm−1, which together
contribute to more than 60% to the effective Huang-Rhys factor. We found values for the
three excited states with c-DFT to be S = 0.88, S− = 0.65, and S+ = 0.35. This can
be compared to data by Hoffmann et al. finding a value of S = 0.77 [57] from fitting to
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mode Cation Anion neutral neutral
B3LYP Raman [58] DFT DFT c-DFT TD-DFT

λj Sj λj Sj λj Sj λj Sj

(cm−1) (cm−1) (cm−1) (1) (cm−1) (1) (cm−1) (1) (cm−1) (1)
225 233 26 0.123 14 0.066 86 0.404 61 0.286
380 388 14 0.038 24 0.067 2 0.005 2 0.006
457 476 12 0.028 3 0.008 4 0.008 2 0.005
520 538 1 0.001 54 0.109 40 0.081 39 0.080
605 625 28 0.048 2 0.004 33 0.057 27 0.048
709 724 4 0.006 0 0.000 5 0.007 6 0.009
819 856 4 0.005 2 0.003 0 0.000 0 0.000
1013 1050 41 0.042 1 0.001 25 0.026 14 0.014
1111 1149 36 0.034 37 0.036 0 0.000 2 0.002
1232 1280 6 0.005 69 0.059 26 0.022 15 0.013
1299 1303 181 0.147 158 0.128 497 0.404 315 0.257
1325 1381 3 0.002 49 0.039 25 0.020 22 0.017
1357 1390 21 0.016 100 0.078 155 0.120 82 0.063
1423 1451 13 0.010 22 0.016 42 0.032 26 0.020
1552 1572 65 0.044 177 0.121 319 0.217 224 0.152
1567 1590 1 0.001 125 0.084 56 0.038 36 0.024
1669 1773 76 0.048 137 0.087 2 0.001 2 0.001
Sum: 0.349 0.649 0.880 0.562

Table 2.6: Calculated Ag breathing modes for PTCDA in the electric ground state to-
gether with the corresponding contribution to the reorganization energy and vibronic cou-
pling constants using B3LYP/TZ. The first section contains the mode frequency in cm−1

compared to measured Raman, the second to fourth section contains the reorganization
energy and Huang-Rhys factor for the cation, anion, neutral excited state calculated with
constrained DFT and neutral excited state calculated with TD-DFT, respectively. The
effective mode and its Huang-Rhys factors are obtained from a summation over modes
between 900 and 1800 cm−1. The table has been truncated for reorganization energies be-
low 1 cm−1. For all entries, the mode frequencies are scaled by 0.973 and the Huang-Rhys
factors by 1/0.973.

solution spectra. Our calculated modes and their relative strength in the neutral excited
state have been compared with experimental Raman cross sections from Akers et al. [61],
resulting in good agreement, see Figs. 2.7 and 2.8. More details can be found in chapter
13 in [62] and in [63].

PTCDI

PTCDI has 114 vibrational normal modes where 54 are Raman active (20Ag + 7B1g +
11B2g+19B3g), 49 are IR active and the other are silent modes. The calculated vibrational

32



CHAPTER 2. MOLECULAR PROPERTIES AND QUANTUM CHEMICAL

ANALYSIS

0 200 400 600 800 1000 1200 1400 1600 1800

wavenumber [cm
 -1

]

0

0.5

1

1.5

2

2.5

3

3.5

H
ua

ng
-R

hy
s 

fa
ct

or
 S

PTCDA

MePTCDI

PR149

PB31

PTCDI

DIP

DDTP

Figure 2.7: Huang-Rhys factors for neutral excitation of the perylene compounds, ob-
tained at the B3LYP/TZ level, with base lines shifted for clarity. All mode energies
have been scaled by a factor of 0.973 adequate for the B3LYP functional [35], and the
Huang-Rhys factors by 1/0.973.

modes of PTCDI are in good agreement with experimental results [64], compare Table
A.2 in Appendix A.5. The biggest contributing modes to the Huang-Rhys factors are at
1311, 1383 and 1567 cm−1, and the total values are S = 0.82, S− = 0.55 and S+ = 0.28.

DIP

For the geometry calculated with TD-DFT we find an effective Huang-Rhys factor of S =
0.61 and with the c-DFT method a value of S = 0.90, in good agreement with experimental
results where S = 0.87 was obtained by fitting to spectra from dissolved molecules [11].
The dominating contributions come from vibronic modes 1313 cm−1 (Sj=0.361), 1426
cm−1 (Sj=0.133), and 1488 cm−1 (Sj=0.138).

For the ions with positive and negative charges the deformation is found to be smaller
resulting in a Huang-Rhys factor of S− = 0.55 and S+ = 0.30, see Table A.5 for contri-
butions from individual modes.

Summary of Huang-Rhys factors

For DDTP, the visualization of the HR factors of the internal modes in Fig. 2.7 reveals
substantial elongations of low frequency internal modes after optical excitation, indicating
that the extension of the perylene core by additional peripheral aromatic rings and the
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Figure 2.8: Me-PTCDI breathing modes. Experiment [61] (black solid line) and calculated
with c-DFT (red dashed line). The functional used was B3LYP/TZ and a scaling of 0.973
was applied to all mode frequencies.

OH groups modifies the mechanical response to the optical excitation substantially. On
the other hand, in the region of the high frequency internal modes clustering between 1300
and 1400 cm−1, the vibrational fingerprint differs from the other compounds investigated
but the parameters describing the effective internal vibration remain in the same range.

For DDTP, PR149 and PB31, Raman spectra have not been reported yet, so that the
calculated mode frequencies and Huang-Rhys factors cannot be validated by a comparsion
to measured data. However, since we have strong evidence that for PTCDA, Me-PTCDI,
PTCDI and DIP, the B3LYP functional gives accurate results, we expect this to remain
valid for similar molecules. Fig. 2.7 contains a comparison of the Huang-Rhys factors of
our model compounds. In the high frequency region between 1250 and 1600 cm−1, all
molecules contains four carboxylic groups show similar patterns, with a strongly elongated
C-H bending mode close to 1300 cm−1 and vibrational modes resembling optical phonons
of graphite slightly below 1600 cm−1. In DIP, the strongest Raman mode contains again
significant C-H bending contributions, but the somewhat different composition of the
molecule places this mode at a lower frequency of 1277 cm−1, in good agreement with the
observed mode at 1284 cm−1, compare Table A.5.

In general, for all molecules we find that the ions have smaller reorganization energies
resulting in lower Huang-Rhys factors, and for all molecules studied the cations have the
lowest values. This finding corroborates earlier B3LYP calculations on polyacenes demon-
strating that the reorganization energies for the negatively charged molecule were larger
than in their cationic state [66, 55]. For the other molecules, the tabulated vibrational
mode results from B3LYP/TZVP calculations can be found in the Appendix A.5.
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compound E00 S h̄ω S h̄ω S h̄ω
solution spectra c-DFT TD-DFT

PTCDA [15] 2.363 0.86 0.172 0.88 0.171 0.56 0.171
DDTP - - - 0.72 0.167 0.49 0.166
Me-PTCDI [15] 2.363 0.80 0.173 0.87 0.170 0.56 0.171
PB31 [14] 2.350 0.80 0.169 0.87 0.170 0.56 0.171
PTCDI - - - 0.82 0.175 0.51 0.176
PR149 [14] 2.360 0.84 0.170 0.88 0.170 0.53 0.171
DIP [11] 2.351 0.87 0.167 0.93 0.165 0.64 0.170

Table 2.7: Comparison between observed solution spectra, c-DFT calculations of the
deformation pattern in the relaxed excited state, and TD-DFT calculations of this de-
formation pattern. The experimental spectra are fitted to a Poisson progression for the
dielectric response with argument S and vibronic spacing h̄ω, compare eqs. (2.23, 2.25,
2.24). In both types of DFT calculations, the effective mode h̄ω and its Huang-Rhys
parameter S are defined via eqs. (2.43, 2.44).

In Table 2.7 we compare the Huang-Rhys factors for neutral excitation obtained from
constrained DFT calculations and TD-DFT with the observed vibronic progression in
solution spectra of perylene compounds [67, 60], revealing that constrained DFT calcula-
tions are in better agreement with the experimental findings.

2.4 Pentacene

Resonant Raman spectra and solution spectra were also obtained on other compounds,
including pentacene, rubrene, and triphenyldiamine (TPD) (Fig. 2.9). The calculations
summarized in the present section were applied to an analysis of resonant Raman spec-
tra obtained on single crystals of pentacene, grown by J. Pflaum [68]. The non-planar
compounds rubrene and TPD will be discussed in Sec. 2.5.

Pentacene has proven to be a very good candidate for organic electronics since it has
demonstrated one of the highest electron and hole mobilities of all organic semiconductors
investigated so far [69]. Pentacene can be found in diverse fields such as light sensors [70],
field effect transistors [71], photovoltaic cells [72, 73, 74, 75, 76], strain sensors [77], and
thin film transistors (TFT) [78, 79]. Pentacene can form highly ordered polycrystalline
films depending on the growth conditions. Previous studies of the optical properties of
pentacene thin films were performed by Hinderhofer et al. [80] showing that the mate-
rial inherits a strong optical anisotropy from the specific arrangement of the two basis
molecules in the crystal unit cell.

Vibronic studies on pentacene show that the internal vibrational modes [81] and vi-
bronic coupling to external phonons [82] affect the carrier transportation properties. The
particle transport achieved in pentacene has revealed electron and hole mobilities above
1 cm2/Vs [4].
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Figure 2.9: The chemical structure of pentacene, rubrene and TPD.

Studies on vibrational properties including papers by Banasiewicz [83, 84] et al. report
spectroscopic properties on pentacene in solution and in Shpol’skii matrices. Amirav et
al. studied the out-of-plane vibrational modes of an isolated single molecule via laser
spectroscopy [85], Malagoli et al. used a multimode analysis to study vibrations of ions
[86], and Hartmann et al. have investigated pentacene in liquid helium droplets [87].

Resonant Raman and deformation pattern

Previous studies on the lowest excited states have been performed both with optical
measurements [84] and theoretical methods [23]. Our study extends these calculations
to include higher excitations so that we can analyse Raman spectra in resonance with
different electronic excitations. For the lowest transition, we find that our TD-DFT
calculation reproduces earlier TD-DFT results and the observed Raman intensity pattern.
In Fig. 2.10 we compare the measured Raman spectra excited at 514 nm (2.41 eV), the
lowest calculated TD-DFT transition 1B2u (1.93 eV) and a constrained approach where
only the HOMO to LUMO transition is allowed. We find that both TD-DFT and c-DFT
are able to produce a deformation pattern compatible with the observed Raman spectra.
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Figure 2.10: Comparsion of measured Raman spectra (lower) close to resonance with the
1B2u (1.93 eV) transition with calculated intensities obtained with TD-DFT B3LYP/TZ
(middle), and c-DFT (upper). The exciting laser had an energy of 514 nm (2.41 eV). The
calculated intensities have been reproduced as S(h̄ω)2 for B3LYP vibrational frequencies
scaled by a factor of 0.973.

By studying the valence orbitals of pentacene it is possible to obtain an understand-
ing of the deformation that is taking place after the laser excitation. This transition
(HOMO→LUMO) gives rise to a stretching of the whole molecule along the long axis.
The reason for this can be found in the frontier orbitals: in the ground state, the va-
lence electron contributes to a contraction along the long axis, whereas in the LUMO
state the wave function has more repulsive nodes along the long axis but contributes to a
contraction along the short axis, see Fig. 2.11.

By using a laser with shorter wavelength it is possible to access transitions of higher
energy. Our calculations shows that the next two allowed transitions consist of two differ-
ent electronic excitations HOMO-2→LUMO and HOMO→LUMO+2. As the transition
dipoles of these two excitations are parallel and of similar size, they produce a destructive
interference with very low oscillator strength at 3.23 eV (fosc = 0.005) and a very strong
transition at 4.28 eV with fosc = 3.333.

To examine those two superimposed electronic excitations of pentacene, we need to
study the two electronic excitations given (HOMO-2→LUMO and HOMO →LUMO+2)
separately. To do this, we apply the c-DFT scheme to each of them. The geomet-
ric changes can be understood once again by looking at the contributing orbitals. As
stated previously the HOMO contributes to a longitudinal contraction. After exciting to
LUMO+2, the pronounced node of this orbital along each bond crossing the long axis
makes the molecule expand along the short axis, and the increased number of nodes along
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Figure 2.11: Frontier orbitals and deformation pattern for 1B2u electronic excitation
dominated by 3B3g→4B1u (HOMO→LUMO), obtained with c-DFT B3LYP/TZVP. In the
lower panel the black circles represent the ground state and the colored semi-transparent
represent the molecule in its relaxed excited geometry. For clarity, the deformation has
been increased by a factor of 20.

the long axis increases its length. Altogether, both ingredients contribute to an expansion
of the molecular area, see Fig. 2.12. The HOMO-2→LUMO excitation yields a similar
deformation pattern because the transverse bonding regions of HOMO-2 are replaced by
a weaker bonding LUMO orbital. Again, the increased number of lobes in the LUMO
expands the geometry in the longitudinal direction.

From this we conclude that the pre-resonant laser excitation with a wavelength of
325 nm mainly gives rise to HOMO → LUMO+2 and HOMO-2 → LUMO excitations.
The measured spectra obtained at 325 nm and the computed vibrational modes together
with their Raman intensities proportional to S(h̄ω)2 are in very good agreement, see
Fig. 2.13 and Table 2.8. The c-DFT scheme was found to be an excellent way to study
individual contribution of both main transitions involved in this Raman spectra, compare
Fig. 2.13. There is clear evidence that the HOMO-2 → LUMO transition contributes
more in the lower regions, especially at peaks around 740 cm−1 and 1175 cm−1, while the
HOMO→LUMO+2 contributes more above 1380 cm−1

From these results we conclude that the lowest dipole-active 1B2u transition found
in TD-DFT is dominated by HOMO → LUMO excitations (99.2%) resulting in the c-
DFT and TD-DFT will give essentially equivalent results. However, for higher transitions
which are not dominated by a single electronic excitation between a specific pair of Kohn-
Sham orbitals, TD-DFT is required to address the specific mixture occuring in the optical
excitation.

The most prominent vibrational modes are found at 257 cm−1 which is a stretching
mode in the long direction, whereas at 742 cm−1 there is a stretching mode in the short
direction of the molecule. At 1173 cm−1 there is a C-H bending mode and at 1368 cm−1
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Figure 2.12: Frontier orbitals and deformation pattern for electronic excitations, obtained
with c-DFT B3LYP/TZVP. In the lower panel the black circles represent the ground state
and the colored semi-transparent represent the molecule in its relaxed excited geome-
try. For clarity, the deformation has been increased by a factor of 20. Left: Excitation
3B3g→3Au (HOMO→LUMO+2). Right: excitation 3B2g→4B1u (HOMO-2→LUMO).
Both excitations have a transition dipole along the long axis of pentacene.

and 1513 cm−1 there are C-C stretching modes. In Fig. 2.14 these mode are visualized.
The elongation of two prominent B3g modes observed at 1598 cm−1 and 1628 cm−1 cannot
be understood from our analysis of rectangular deformations occuring in individual optical
transitions. Instead, their Raman activity arises from an off-diagonal coupling between
two transitions with orthogonal transition dipoles influenced by elongations of these B3g

modes, a coupling mechanism which will not be quantified in the present thesis.
We found that resonant Raman spectra reveal deformations in relaxed excited states

where different resonance conditions leads to different transitions and deformation pat-
terns. Two complementary ways to study these transfers are TD-DFT and a constrained
DFT scheme, both giving quantitatively reliable deformations patterns. Their specific
advantages is that TD-DFT gives the actual mixture occurring in the optical excitation
while c-DFT gives access to the individual transitions. Further details of this refined in-
terpretation of Raman spectra in resonance with higher lying transitions will be discussed
elsewhere [68].

As a further note, photoionization spectra of pentacene have been interpreted with
DFT [55], and as our computational scheme reproduces these results for the cationic
state together with a larger deformation of the anionic molecule, we are confident that
the B3LYP functional is well suited for ionized perylene compounds as well, compare Sec.
2.3.5.
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Figure 2.13: Comparsion of measured Raman spectra (lower, green line) close to resonance
with the 2B3u (4.28 eV) transition obtained with TD-DFT B3LYP/TZ (second lowest,
blue line), and c-DFT (two upper, red lines). The exciting laser had an energy of 325
nm (3.82 eV). The calculated intensities have been reproduced as S(h̄ω)2 for B3LYP
vibrational frequencies scaled by a factor of 0.973.

Figure 2.14: Visualization of the five most prominent Raman-active modes of pentacene:
257 cm−1, 743 cm−1, 1173 cm−1, 1368 cm−1, and 1513 cm−1.
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experimental calculated experimental calculated
514 nm 1B2u 325 nm 2B3u

mode intensity mode intensity mode intensity mode intensity
cm−1 (arb.) cm−1 (arb.) cm−1 (arb.) (arb.)

Ag - - 257 0.029 268 0.111 257 0.087
Ag - - 743 0.057 752 0.486 743 0.419
Ag - - 995 0.213 991 0.029 995 0.101
Ag 1158 0.486 1156 0.164 1156 0.265 1156 0.002
Ag 1178 0.855 1173 0.453 1178 0.748 1173 0.538
Ag 1372 1.000 1368 1.000 1371 1.000 1368 1.000
Ag 1412 0.208 1392 0.302 1410 0.745 1392 0.646
Ag 1458 0.151 1454 0.044 1458 0.641 1454 0.298
Ag 1533 0.239 1513 0.209 1533 0.459 1513 0.066
B3g 1598 0.278 - - 1598 0.4775 - -
B3g - - - - 1622 0.1743 - -
B3g - - - - 1931 0.0670 - -

Table 2.8: Observed dominant Raman peaks at measurements with 514 nm and 325
nm laser, with their relative intensities compared to calculated modes, obtained with
B3LYP/TZVP and scaled by 0.973. The relative intensity has been normalized to the
observed mode at 1371 cm−1. Modes visualized in Fig. 2.14 are highlighted.
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TD-DFT c-DFT
mode 1B2u 2B3u HOMO→ HOMO→ HOMO-2→

LUMO LUMO+2 LUMO
h̄ωj Sj Sj Sj Sj Sj

(cm−1) (1) (1) (1) (1) (1)
257 0.238 0.135 0.231 0.069 0.059
602 0.025 0.000 0.026 0.001 0.001
631 0.001 0.000 0.001 0.000 0.000
743 0.054 0.077 0.052 0.103 0.201
774 0.010 0.000 0.019 0.000 0.001
991 0.015 0.010 0.018 0.016 0.004

1156 0.050 0.000 0.052 0.000 0.001
1173 0.171 0.045 0.208 0.058 0.054
1296 0.005 0.001 0.001 0.001 0.000
1368 0.279 0.053 0.354 0.129 0.117
1392 0.071 0.033 0.052 0.051 0.033
1454 0.008 0.014 0.007 0.023 0.011
1513 0.146 0.001 0.187 0.004 0.008
1532 0.037 0.003 0.022 0.019 0.009
sum 0.781 0.160 0.900 0.300 0.236

Table 2.9: Internal vibrations of pentacene. The first column are the calculated vibrational
modes scaled by 0.973 [34], the other columns are the Huang-Rhys factor for each mode
calculated with TD-DFT and c-DFT, scaled with 1/0.973. The modes where both types
of Huang-Rhys factors are below 0.001 are not shown. Modes visualized in Fig. 2.14 are
highlighted.
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2.5 Spectroscopic properties of non-planar molecules

2.5.1 TPD

N,N ′-diphenyl-N,N ′-bis(3-methylphenyl)-(1,1’-biphenyl)-4,4’-diamine (TPD, see Fig. 2.9),
has recently attracted attention due to its rather high hole mobility, allowing to use it
as a hole-conducting layer in light-emitting diodes [88, 89, 90, 91]. The Stokes shift of
0.5 eV is large enough to make it transparent to its own photoluminescence, so that it
becomes a promising material for laser applications [90, 92, 93, 94]. It has been found
that the intermolecular distances in the crystalline phase are rather large, without stack-
ing of the aromatic rings. Thus, in sharp contrast to perylene pigments or pentacene, the
intermolecular interactions should not play a dominating role in the photophysics. We
have performed studies on TPD with the objective to provide an ab initio interpretation
of the experimentally observed Stokes shift. The DFT calculations were carried out with
the hybrid functional B3LYP where the molecular geometry was optimized at the DZ
level, and the vertical excitation energies were obtained with TD-DFT in the adiabatic
approximation, using the same functional and basis set.

Figure 2.15: Trans isomer of N,N ′-diphenyl-N,N ′-bis(3-methylphenyl)-(1,1’-biphenyl)-
4,4’-diamine (TPD).

Raman activity

The overall Stokes shift was obtained from a TD-DFT optimization of the geometry in
the excited state [24], and for the Raman activity of the internal modes, a projection
of the deformation in the relaxed excited state onto the vibrational eigenvectors defined
the Huang-Rhys factors Sk for each internal mode h̄ωk, as described in Sec. 2.2. For
an assignment of the measured Raman-active modes to calculated internal vibrations, we
determined their contributions to the reorganization energies. The procedure is described
previously in Sec. 2.2.3, and the experimental details can be found in [95, 96].

The calculated vibrational modes are compared with Raman measurements, see also
[96]. The calculated resonant Raman spectra in Fig. 2.16 are defined by eq. (2.41) and
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visualized with a Lorentzian broadening of FWHM=10 cm−1 similar to the measured
linewidths. The elongations of the internal modes in the relaxed excited geometry are
obtained from two complementary projection schemes. However, from the very large
changes of some dihedral angles in the excited geometry, compare Table 2.10, one projec-
tion scheme suffers from non-orthogonality problems related to the modified orientations
of the various phenyl rings. The large change of the dihedral angle α produces a cross-
talk between torsional modes, out-of-plane wagging modes and low frequency in-plane
bending modes, resulting in rather large features in the range 700 - 800 cm−1 where the
experimental Raman spectra do not contain substantial cross sections, see [96] for details.
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Figure 2.16: Left: Raman spectra of pure TPD powder with pre-resonant measurement
of TPD powder using a laser line at 514 nm (2.41 eV), and resonant Raman spectra
obtained with a laser line at 325 nm (3.81 eV). Right: calculated resonant Raman spectra
according to eq. (2.41), with B3LYP frequencies scaled down by a factor of 0.973. The
computed spectra are visualized with Lorentzian lineshapes with a FWHM of 10 cm−1.

Absorption and PL

The absorption spectra of TPD consist of two distinct peaks at 3.4 and 4.0 eV. The
dominating one is always the lower regardless of the type of solvent or substrate (see
Fig. 2.17). The PL exhibits a strong redshift with an intensity maximum around 3.1
eV followed by several shoulders at lower energy. As shown in [96], these sidebands arise
from a vibronic progression over an effective internal mode with h̄ωeff = 158 meV (1278
cm−1), calculated as an average over the most strongly elongated in-plane modes. The
peaks of absorption and PL are clearly separated in all solvents, see Fig. 2.17. The spectra
for TPD dissolved in toluene have a separation between the maxima of absorption and
PL of approximately 0.38 eV, whereas the Stokes shift between the average over the first
absorption peak and the center of mass of the PL band is 0.57 eV, defined after eliminating
the prefactors E in absorption and E3 in PL, respectively [97].
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Figure 2.17: Measured linear absorption and PL of TPD at room temperature. Top: PS
films doped with varying amounts of TPD: 20% (solid black line), 50% (dashed red line)
and 80%(dot-dashed blue line). Bottom: TPD dissolved in chloroform (solid black line)
and toluene (red dashed line) at a concentration of 5 ×10−5 mol/L in a 1-cm-thick quartz
cuvette.

Optimized Geometry in electronic ground and excited state

The molecular structure of the trans isomer of TPD is displayed in Fig. 2.15. It consists of
a central biphenyl core and two twisted diphenylamine terminal wings, where the methyl
groups of the tolyl rings point into the same direction. The geometric parameters in the
electronic ground state and in the lowest excited state are reported in Table 2.10.

isomer, state Rc [Å] α β, γ µ ν
cis, ground 1.484 32.8◦ 40.3◦ 43.3◦ 42.8◦

cis, excited 1.444 4.7◦ 55.5◦ 32.8◦ 32.7◦

trans, ground 1.484 32.9◦ 40.3◦ 43.2◦ 42.8◦

trans, excited 1.444 −3.5◦ 53.6◦ 33.3◦ 33.3◦

Table 2.10: Optimized geometries of the cis and trans isomers of TPD in their electronic
ground and excited states obtained at the B3LYP/DZ level, using DFT for the electronic
ground state and TD-DFT for the excited state. Rc - length of central bond; α - central
dihedral angle; β, γ - dihedral angles of the terminal rings; ν, µ - torsion angles of the
terminal rings, compare Fig. 2.15.

The twisting in the electronic ground state is quite pronounced, as shown by the value
of the central dihedral angle α = 32.8◦, see Table 2.10. The twisted geometry obtained
with B3LYP/DZ is in a good agreement with the results of previous DFT calculations
[98, 95]. However, the calculated shape does not correspond precisely to the experimental
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structure in a crystalline environment, as obtained by X-ray diffraction measurements
on single crystals [99]. In the crystalline phase, the peripheral wings adopt considerably
different conformations, thus breaking the C2 symmetry which can be realized in the free
molecule. After excitation TPD becomes nearly planar with the central angle reduced to
4.7◦ and with the central bond length significantly shortened, see Table 2.10. A similar
tendency was observed in previous calculations based on Hartree-Fock and CIS [100, 95].
The change of the dihedral angle in the center of the molecule can be understood from
the node patterns of the orbitals reported in [96].

Transition Energies and Reorganization Processes

The present TD-DFT analysis shows that additional transitions with significant coupling
strengths occur below the measured ionization potential of 6.69 eV. In the ground state
geometry, time-dependent DFT calculations at the B3LYP/DZ level find the lowest tran-
sition at 3.39 eV with an oscillator strength of fosc = 1.06, as well as several transitions
between 3.75 and 5 eV with a total oscillator strength of fosc = 0.65, see [96] for details.

isomer, PES geometry reorganization energy
ground excited

cis, ground 0. 0.224 λg= 0.224
cis, excited 3.390 3.118 λe= 0.272
cis, transition 3.390 2.894 λg + λe= 0.496
trans, ground 0. 0.209 λg= 0.209
trans, excited 3.391 3.119 λe= 0.272
trans, transition 3.391 2.910 λg + λe= 0.481

Table 2.11: Energies (in eV) of the potential energy surfaces in the electronic ground state
and the lowest excited state, for the relaxed geometries of the cis and trans isomers. The
ground state energies have been obtained with DFT, and the excited state energies with
TD-DFT, both at the B3LYP/DZ level. For each isomer, the reference energy relates
to the geometry in the electronic ground state. On an absolute scale, the ground state
energies of both isomers differ by less than 1 meV.

The Raman cross sections of high frequency modes are defined on a time scale faster
than the twisting motion, so that they can be quantified from the modified excited geom-
etry where the dihedral angles are frozen to their values in the electronic ground state.
This projection scheme improves the agreement with the measured Raman spectra in
the range 1002 - 1605 cm−1, where the vibrations are dominated by elongation patterns
in the plane of the various phenyl rings. The four strongest observed features at about
1600 cm−1, 1296 cm−1, 1186 cm−1 and 1002 cm−1 are reproduced quantitatively, with a
reasonable relative size of the respective cross sections.
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Calculated absorption and PL line shapes

According to the scheme introduced for the perylene compounds, the internal vibrations
in the range 900 cm−1 to 1800 cm−1 were replaced by an effective mode at 1278 cm−1

(158 meV) with an effective Huang-Rhys factor of S=0.72. The Stokes shift consists of the
sum of the reorganization energies on the potential energy surface of the electronic ground
state and the excited state, λS = λg + λe. The total Stokes shift of 0.49 eV composed of
λg = 0.22 eV and λe = 0.27 eV is in good agreement with the experimental value of 0.57
eV.

Figure 2.18: PES for rotation of the two halves of TPD around the dihedral angle α, for
the electronic ground state and the lowest 10 excited states. The colored lines visualize
Boltzmann distributions at T = 300 K around the minima of the lowest two PESs and
the transition energies starting from the minima of the two PESs. The dashed vertical
line indicates the lowest transition energy.

For low-frequency modes with h̄ωk ≪ kBT , including especially those involving a
twisting of the bond connecting the two rings of the central biphenyl group, we compare
the elongation patterns and harmonic frequencies of the modes at the minimum of the
potential energy surface (PES) of the excited state with the modes in the electronic ground
state, compare Fig. 2.18. For these modes, we find substantial differences, reflecting
directly the different shape of the two PES along selected twisting angles, especially
around the bond connecting the central biphenyl group. Therefore, instead of using the
Huang-Rhys factors of these modes, we model the absorption and PL line shapes starting
from a Boltzmann distribution over the twisting angle α around the central bond. The
shape of the two PES around this bond results directly in a large asymmetry between the
density of states and broadenings involved in absorption and PL. This is also reflected in
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different contributions to the respective reorganization energies λg and λe.
The model curves in Fig. 2.19 are obtained from a Poisson progression over an effective

mode at h̄ωeff =
∑

k Skh̄ωk/
∑

k Sk = 1278 cm−1 (158 meV) with Seff =
∑

k Sk = 0.87,
where the shape of each vibronic subband is defined by the convolution of the respective
DOS with a Gaussian of FWHM= 0.15 eV, see [96] for more details.

Figure 2.19: Comparison between the measured absorption and PL for TPD dissolved
in toluene (green, absorption; red, PL) and the model calculation based on the dihedral
angle α, a convolution with a Gaussian having a FWHM of 0.15 eV, a Poisson progression
over an effective mode at 158 meV with a Huang-Rhys factor of 0.87, and a rigid shift
of the absorption band by +13 meV and of the PL band by −162 meV (black, dashed
line). In each case, the vibronic subbands resulting from a convolution of the DOS with
the Gaussian are shown separately (black thin lines). Altogether, the center of mass of
the absorption band is shifted by +156 meV against the TD-DFT reference and the PL
band by +81 meV.

Conclusion

It was found that the twisted shape of the TPD central biphenyl group allows to under-
stand the different linewidth observed in absorption and PL together with an asymmetry
between the reorganization energies on the two potential energy surfaces involved. The
torsional modes at low frequencies contribute substantially to the broadening of absorp-
tion and PL. As a matter of fact, the vibronic subbands of a high frequency effective mode
defined as an average over the most strongly elongated high frequency modes can only be
observed in PL, but in absorption, the subbands are washed out by the larger broadening
arising from the flat ground state potential along the twisting angle around the central
bond.

Our detailed model calculations have demonstrated that the photophysics of TPD can
be understood from the properties of the molecule itself. The influence of intermolecular
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interactions is restricted to a small dependence of the Stokes shift on the solvent or matrix
material, but the contribution of the surroundings to the broadening remains much smaller
than the influence of the torsional modes of TPD at very low frequency.

2.5.2 Rubrene

In order to investigate the optical properties of rubrene we study the vibronic progression
of the first absorption band (lowest π → π∗ transition). The ab initio calculations are
compared with experimental findings concerning absorption in solution and the dielectric
functions ε2, see [101] for more details.

Rubrene mainly forms two isomers, one with a planar backbone and one with a twisted
backbone, see Fig. 2.20. Even though the twisted isomer is more stable both as a free
molecule and in solution, in the crystalline phase the planar isomer can be stabilized by
a beneficial geometric arrangement between neighboring molecules, resulting in a large
cohesive energy so that the energetic cost of the planarization is overcompensated by
attractive inter-molecular interactions. In the twisted isomer the repulsion between the
phenyl sidegroups achieves a rather large distance between them as opposed to the planar
isomer, where a relatively small distance between the phenyl groups is enforced by the
rigidity of the bond connecting each sidegroup to the tetracene core and by the more
restrictive point group C2h. Therefore, the twisted isomer gains a substantial amount of
energy through a reduction of these repulsive interactions, allowing eventually to invest
a part of this energy into the unfavorable twist of the tetracene backbone. The resulting
angle between the two central rings of the tetracene core is 22.8◦ in the electronic ground
state, and the angle between the two final rings 42.0◦, compare Fig. 2.20b. In the relaxed
excited state these angles increase to 26.7◦ and 43.6◦, respectively.

Figure 2.20: (a) Geometry of the most stable rubrene isomer with a twisted tetracene
backbone, and (b) planar rubrene isomer, which resembles the geometry in the crystalline
phase.

We compare calculations of rubrene in two different conformations, i.e. with a twisted
or planar tetracene backbone. For both isomers the calculated vibronic progressions de-
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E0−0 Ev Sexp Scalc

Solution 2.359 0.165 0.986 0.985
Thin Film 2.335 0.169 0.974 1.025

Table 2.12: Fit of measured spectra in the region of the first absorption band to the model
of the displaced harmonic oscillator, for rubrene in solution and amorphous thin films:
Transition energy between the vibrational ground states E0−0 (eV), effective vibrational
energy h̄ω (eV), and effective Huang-Rhys factor S, see [101] for more details.

scribe the observed spectra very well. However, the different calculated transition energies
found for the two conformations indicate that the spectrum of amorphous rubrene films
is dominated by the twisted isomer. The calculations result in Huang-Rhys factors of
(Stwist = 0.985, Splan = 1.025) which are in excellent agreement with the experimental
results, showing only very small differences between the twisted and the planar isomer.
However, the almost coinciding Huang-Rhys factor for the twisted isomer with the ob-
served value should be interpreted cautiously. This agreement is better than for previous
applications of the same functional and basis set to the relaxed excited geometry of other
polyaromatic molecules. Therefore, a distinction between both isomers on the basis of the
Huang-Rhys factors is not possible. However, the same calculations show that the transi-
tion energies of the twisted and planar monomer differ significantly with ∆Eabs = 0.106 eV
and ∆E0−0 = 0.120 eV, respectively. As the observed spectra shows sign of two superim-
posed Poisson progressions with an energy offset in this range, it can be concluded that
one of the isomer dominates in the amorphous films. Due to the much higher stability,
this isomer can only correspond to the twisted configuration.

Summary

We have investigated the optical properties of rubrene by examining the vibronic pro-
gression of the first absorption band, the lowest π → π∗ transition. The analysis of
the dielectric function ǫ2 in solution and thin films was performed using the displaced
harmonic oscillator model, from this we could derive the relevant parameters of the vi-
bronic progression. Comparison between experimental data and DFT calculations was
done with two different conformations, one with twisted and one with planar tetracene
backbone. The calculated values describes the observed spectra very well. The different
transition energies found for the two conformations give an indication that the spectrum
of amorphous rubrene films is dominated by the twisted isomer.
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Chapter 3

Crystal structure of perylene
compounds

This chapter concerns the crystalline phase, focusing on the variables that are connected
to the exciton model described in Chap. 4, such as transfer integrals and dipole moments.
As in Chap. 5 this model will only be applied to perylene-based compounds, other types
of molecules discussed in Chap. 2 will not be considered any further.

3.1 Crystal geometry and dielectric response

3.1.1 Transition dipoles of monomers

For molecules with a perylene backbone, in general, the transition dipole of the HOMO to
LUMO transition is aligned along the long axis of the molecule. Due to the herringbone
structure there are two directions of the molecular transition dipole moment in the crystal,
µA and µB, one for each basis molecule. In the space group P21/c, the b lattice vector
defines a C2 axis followed by a shift of (b + c)/2, with the important consequence that
all second order tensors decouple into a 1× 1 block for the b direction, and a 2× 2 block
governing the plane spanned by the lattice vectors a and c. In the following, we shall use
the convention that the transition dipoles µA and µB of the two basis molecules form an
angle δ below 90◦ with the b lattice vector, so that their sum (µA + µB)/

√
2 is oriented

along b, whereas the difference (µA − µB)/
√

2 is located in the ac-plane, compare fig.
3.1. Discarding the small contributions of intermolecular transition dipoles towards CT
states, the ǫyy is defined by the dielectric tensor along the b = (µA + µB)/

√
2 direction

and ǫxx along the direction defined by (µA − µB)/
√

2. The angle δ (see Fig. 3.1) can be
used to describe the relation between the molecular long axis and the b lattice vector in
the form of cos2 δ and sin2 δ, see Table 3.1.
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3.2. CRYSTAL UNIT CELL

Figure 3.1: Relation between the orientation of the molecules in the unit cell and the
xy-plane, defined by the transition dipole µA and µB of the two basis molecules.

compound δ ǫyy ǫxx

(◦) cos2 δ sin2 δ
α-PTCDA [102] 41.0 0.57 0.43
DDTP [103] 29.6 0.76 0.24
Me-PTCDI [3] 18.4 0.90 0.10
PB31 [104] 53.1 0.36 0.64
PTCDI [105] 81.5 0.02 0.98
PR149 [106] 83.7 0.01 0.99
DIP [107] 89.3 1.5·10−4 1.00

Table 3.1: Angle δ between the molecular HOMO-LUMO transition dipole and the lattice
vector b, and relative contributions of this transition to the strength of the dielectric
response ǫyy along y ‖ b and to the component ǫxx obtained with x ‖ (µA − µB)/

√
2.

3.2 Crystal unit cell

The crystal geometry of perylene compounds is governed by external forces between the
stacked molecules, i.e. the van der Waals attraction which strives to place the perylene
center on top of each other and the Coulomb interaction between charged parts of the
molecules. The competition between Coulomb interaction, van der Waals attraction and
steric repulsion involving the side wings will displace the positions of the molecules in
adjacent layers, so that their centers will not be aligned along the normal of the molecule.
Thus, the side wing groups will play a large role in the mutual orientation of the molecules,
so that each perylene compound has a specific stacking geometry. There are great di-
versities in packing for different compounds in their solid state. As an example, for
PTCDA and Me-PTCDI which have relatively small side groups, the Coulomb attraction
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between differently charged carbon and oxygen atoms is dominant, so that deviations
between stacking direction and molecule normal remain small. On the other hand, for the
molecules with larger side wings, such as PR149 and PB31, the side groups will contribute
largely to displacing the molecules to a position with smaller geometric overlap between
the perylene cores.

Figure 3.2: 3D view of the unit cell of PTCDA with the lower part invisible for easier
view.

parameter α-PTCDA DDTP Me-PTCDI PB31
Molecular formula C24H8O6 C34O2N2H18 C26H14N2O4 C40H26N2O4

Space group P21/c P21/n P21/c P21/c
Point group D2h - C2h C2h

a (Å) 3.72 10.56 3.784 4.737
b (Å) 11.96 3.78 15.580 32.45
c (Å) 17.34 26.52 14.597 9.51
β (◦) 98.8 95.2 97.65 100.27
Z 2 2 2 2
Volume (Å3) 762.4 1056.7 873.19 1438.0

Table 3.2: Crystal unit cell data of perylene pigments, ordered according to length of
stacking vector: α-PTCDA [102], DDTP [103], Me-PTCDI [3] and PB31 [104]. In the
monoclinic space group P21/c, the lattice vector b is orthogonal to the other two, a ⊥
b ⊥ c, and β is the angle between the lattice vectors a and c. Z is the number of molecules
per unit cell. The stacking vector is highlighted.

A molecular crystal defines a periodic arrangement, so that all molecules far from
the surface experience the same surroundings. Therefore, each unit cell contains the
same information as the bulk crystal. Depending on the stacking and the orientation of
molecules in the lattice, different numbers of molecules reside in the unit cell. In the case
of PTCDA and Me-PTCDI, and many other aromatic molecules, the structure resembles
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parameter PTCDI PR149 DIP
molecular formula C24H10N2O4 C40H36N2O4 C16H8

Space group P21/n P21/c P21/a
Point group D2h C2h D2h

a (Å) 4.865 17.03 7.171
b (Å) 14.660 4.869 8.550
c (Å) 10.844 17.096 16.798
β (◦) 91.33 93.40 92.42
Z 2 2 2
Volume (Å3) 773.20 1413.0 1029.0

Table 3.3: Crystal unit cell data for PTCDI [105], PR149 [106] and DIP [107]. See caption
of Table 3.2 for details.

the body-centered lattice with two molecules per unit cell. However, unlike in an atomic
crystal, the molecules are not connected via strong covalent or ionic bonds, but mainly
by weak van der Waals forces.

A common feature for all the molecules in the present report is that they have a
monoclinic crystal system with α = γ = 90◦, so that the volume of the crystal unit cell is
given by

V = abc · sin β, (3.1)

where a, b, and c are the length of the lattice vectors and α, β, and γ are the angles
between them, compare Fig. 3.2, where β is the angle (a

∧
c). The volume of the crystal

governs the density of the dipole moments, defining in turn the strength of the optical
response. The unit cells parameters can be found in tables 3.2 and 3.3.

Some compounds may grow in different phases depending under which conditions
they crystallize. In these cases, the best characterized phase was chosen. For PTCDA,
the α phase was chosen since there exist several independent X-ray characterizations
implying that this phase is the most abundant in polycrystalline films obtained from
organic molecular beam deposition (OMDB) at room temperature [102, 108]. PB31 and
DIP have a second crystalline phase with a space group including four basis molecules
[8, 104, 107]. In order to test the transferability of the exciton model discussed below, these
cases will not be analyzed further, concentrating instead on the herringbone structure
with two molecules per unit cell. It is defined by a unit cell containing of two identical
molecules, A and B, differing by their orientation, compare Figs. 3.3 to 3.9.
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Figure 3.3: Unit cell for the crystalline phase of α-PTCDA, with parameters according to
Table 3.2. Left: view along stacking vector a, right: view of stacked dimer along molecule
normal (top) and along short axis of molecule (bottom).

Figure 3.4: Unit cell for the crystalline phase of DDTP, with parameters according to
Table 3.2 with projection as in Fig. 3.3.
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Figure 3.5: Unit cell for the crystalline phase of Me-PTCDI, with parameters according
to Table 3.2 with projection as in Fig. 3.3.

Figure 3.6: Unit cell for the crystalline phase of PB31, with parameters according to
Table 3.2 with projection as in Fig. 3.3.
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Figure 3.7: Unit cell for the crystalline phase of PTCDI, with parameters according to
Table 3.3 with projection as in Fig. 3.3.

Figure 3.8: Unit cell for the crystalline phase of PR149, with parameters according to
Table 3.3 with projection as in Fig. 3.3.
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Figure 3.9: Unit cell for the crystalline phase of DIP, with parameters according to Table
3.3 with projection as in Fig. 3.3.

In all crystals except for DIP, the intermolecular distance measured along the normal
for the molecular plane resembles graphite (3.35 Å) and shows little dependence on the
size of the sidewings, see Table 3.4. This is due to the fact that the distance between the
planes is mainly governed by van der Waals interaction between the aromatic cores of the
perylenes. In the case of DIP, the perylene cores hardly overlap at all, resulting in the
distance approaching the sum of van der Waals radiis of carbon and hydrogen. Generally
the stacking vector is much larger than the distance along the normal of the molecular
planes, resulting in substantial projections onto the long axis and the short axis of the
molecules, compare Table 3.4.

compound stack long short normal ϕ
Å Å Å Å (◦)

PTCDA 3.703 1.19 1.04 3.35 82.1
DDTP 3.775 0.45 1.49 3.44 -
Me-PTCDI 3.874 0.89 1.52 3.45 36.8
PB31 4.737 3.16 0.74 3.45 73.7
PTCDI 4.865 3.38 1.10 3.32 17.1
PR149 4.869 0.54 3.38 3.46 12.7
DIP 7.171 2.42 6.03 3.02 3.1

Table 3.4: Geometric arrangement of stacked chromophores with respect to each other:
The second column contains the stacking vectors, the third and fourth the sliding along
long or short axis and the fifth the distance along the molecular normal. ϕ is the angle
between the long axes of the 2 basis molecules, coinciding with the direction of the HOMO-
LUMO transition dipoles. Compare Figs. 3.3 to 3.9 for a visualization of the crystal
structures realized for these perylene compounds.
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3.3 Electronic interaction between stacked molecules

In a crystal, the interaction between molecules is rather small, the largest occurring
between neighbors along the stacking direction. As the distances between the molecular
planes along the stacking direction are relatively short compared to the in-plane distance
between adjacent sites, these types of crystals can be classified as quasi 1D crystals.
Combined with the fact that the π-orbitals overlap along the molecular normal, electronic
interactions along the stack are expected to be stronger than between other neighboring
sites. By using these facts, a convenient way to simplify calculations when investigating
transfers is to introduce a supermolecule approach, where the supermolecule will only
represent the interaction of one molecule and one of its closest neighbors in the stacking
direction, compare Fig. 3.10.

Figure 3.10: Stack alignment in α-PTCDA and visualization of a supermolecule which
consisting of the two molecules drawn with balls and sticks.

3.3.1 Fermionic transfer integrals

The values for the transfer parameters can be deduced from a DFT or HF calculation for
a supermolecule. The pairs of frontier orbitals are governed by Hamiltonians

HLUMO =

(
EL tL
tL EL

)

, (3.2)

HHOMO =

(
EH tH
tH EH

)

, (3.3)
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where eigenstates are defined by symmetric or anti-symmetric superpositions of the molec-
ular orbitals,

ψ±
LUMO =

1√
2

(
1
±1

)

(3.4)

ψ±
HOMO =

1√
2

(
1
±1

)

(3.5)

with eigenvalues of E±
LUMO = EL ± tL and E±

HOMO = EH ± tH . In Fig. 3.11 and 3.12,
the frontier orbitals are shown for PTCDA and Me-PTCDI. By analyzing the signs of the
wave functions it is possible to get information about the signs of the transfer parameters
tL = te and tH = −th. Using Me-PTCDI as an example, from Fig. 3.12, it is clear the the
LUMO is the state ψ+

LUMO with the eigenvalue E+
LUMO = EL + tL. We know that E+

LUMO

is the lower eigenvalue, thus tL has to be negative in order to achieve that. Furthermore
the HOMO in Fig. 3.12 is the state ψ+

HOMO with eigenvalue E+
HOMO = EH + tH , requiring

a positive tH .

Figure 3.11: Visualization of LUMO+1, LUMO, HOMO and HOMO-1 orbitals of
PTCDA, where the different colors of the orbitals represent different signs of the elec-
tronic wave functions. The solid black arrows represent allowed transitions between the
orbitals, and the dotted arrows represent forbidden transitions. The calculations were
performed at the B3LYP/TZ level.

Each stacked pair is governed by the point group Ci since it has a center of inversion.
Therefore, the four Kohn-Sham orbitals closest to the gap form the following dimer or-
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Figure 3.12: As Fig. 3.11, but for Me-PTCDI.

bitals: Hg, Hu, Lg and Lu. The B3LYP values for this subset of orbitals can be found in
Table 3.5. With these orbitals we can construct excited configurations with well defined
parity, either dipole-allowed or dipole-forbidden, see Figs. 3.11 3.12 and 3.17.

|Hu → Lg〉, |Hg → Lu〉 : (Au) (3.6)

|Hu → Lu〉, |Hg → Lg〉 : (Ag) (3.7)

where only the Au-symmetric transitions are allowed, whereas Ag transitions are forbid-
den. From the numerical eigenvalues the relation between energetic splitting and transfer
integrals can be obtained from the difference of the Kohn-Sham orbital energies as

tL = te =
1

2

(

E(Lg) − E(Lu)
)

(3.8)

tH = −th =
1

2

(

E(Hu) − E(Hg)
)

(3.9)

As these stack calculations are performed for the entire chromophores including their
side groups, they are more accurate than estimates based on Figs. 3.14 and 3.14. Never-
theless, for all perylene pigments investigated, the signs of tL = te and tH = −te coincide
with these figures. Table 3.6 compares the results derived from HF and B3LYP calcula-
tions with different variational basis sets, DZ and TZ [40, 41]. The signs are independent
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compound Hg Hu Lu Lg

PTCDA -7.107 -7.039 -4.468 -4.421
DDTP -5.321 -5.105 -2.382 -2.327
Me-PTCDI -6.386 -6.305 -3.640 -3.847
PB31 -6.137 -6.424 -3.849 -3.682
PTCDI -6.376 -6.578 -3.884 -3.847
PR149 -6.132 -6.299 -3.655 -3.616
DIP -5.374 -5.242 -2.715 -2.781

Table 3.5: Kohn-Sham orbital energy levels obtained with DFT calculations at the
B3LYP/TZ level.

compound HF/DZ HF/TZ B3LYP/DZ B3LYP/TZ
PTCDA th -0.052 -0.054 -0.031 -0.034

te 0.021 0.037 0.014 0.024
DDTP th 0.044 0.028

te -0.172 -0.108
Me-PTCDI th -0.071 -0.073 -0.038 -0.041

te -0.160 -0.148 -0.111 -0.104
PB31 th 0.216 0.218 0.140 0.144

te 0.117 0.128 0.078 0.083
PTCDI th 0.150 0.151 0.098 0.102

te 0.018 0.024 0.017 0.019
PR149 th 0.136 0.137 0.090 0.083

te 0.035 0.030 0.022 0.020
DIP th -0.097 -0.099 -0.065 -0.066

te -0.042 -0.041 -0.034 -0.033

Table 3.6: Comparison of calculated transfer parameters th and te dispersion with different
functionals (HF and B3-LYP) and basis sets (DZ and TZ).

of the computational method and basis set but the size of the transfer parameters varies
considerably. Transfer parameters deduced from B3LYP/TZ are systematically smaller
than the respective HF values. This indicates that the short range correlation included
in the B3LYP functional produces more localized orbitals resulting in a reduction of the
intermolecular transfer integrals. Furthermore DFT-based methods are less sensitive to
the size of the variational basis, so that he energies obtained in a finite basis are better
converged than the HF values.

Experimental results for the transfer parameters can be found for PTCDA [111] and
Me-PTCDI [112] where the width of the valence bands has been measured. This band
width corresponds to 4th. Together with the shape of the valence band, the observations
reveal also the sign of the transfer parameter, resulting in values of th = −0.05 eV for
PTCDA and th = −0.04 eV for Me-PTCDI. Unfortunately the experimental values give
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little indication which of the computational approaches produces the best results: for
PTCDA, Hartree-Fock comes closer to the measured value, while calculations on Me-
PTCDI suggest that it is B3LYP.

The visualization of the stacking geometries in the various pigments indicates that the
center of a molecule avoids a position above the center of a hexagon in the underlying
molecule, a situation resembling graphite. In the following we will examine how the
transfer parameters are governed by the stacking parameters of adjacent unit cell. Since
the geometric overlap between the molecules influences on the interaction between the
orbitals, there are also changes in the size and sign of the transfer parameters te and th
as a function of the sliding of adjacent molecules along their long and short axes. Earlier
work investigating sliding exclusively along the short or long axis showed a relationship
between stack geometry and size and sign of the transfer parameters. These were then
used to determine the width of the conduction and valence bands in simplified model
geometries [145].

Figure 3.13: Two PTCDI molecules where the darker area shows the geometric overlap
between the aromatic rings of the two molecules, the black dots display their centers and
the arrows indicate the direction to which one molecule was moved. In the calculations,
the starting point is were the black dots overlap completely.

To study the sign and size of the transfer parameters, it is convenient to introduce
a scheme where each geometric arrangement, within a certain span, can be studied. In
all cases, the displacement between layers is a combination of both orthonormal direc-
tions in the molecular plane. Therefore, calculations in two dimensions are needed to
pinpoint where exactly the transfer parameters change sign. In the following, this ques-
tion is investigated for model geometries consisting of two planar D2h-symmetric PTCDI.
The individual geometries were optimized at the B3LYP/DZ level and the molecules were
placed above each other with a distance of 3.4 Å in the direction along the molecular
normal. From that starting position the molecules were moved, at a constant normal dis-
tance from each other, along different directions, see Fig. 3.13 for a schematic description
of the sliding. The positions of the sign changes are plotted in Fig. 3.14.

By studying the frontier orbitals of PTCDI (see Fig. 3.15) it is possible to interpret
the results. For the LUMO orbitals, which govern the sign and size of the electron transfer
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te, the node planes along the long axis imply sign changes at shifts of about 1 Å and 3
Å along the short axis, but no sign change occurs for sliding along the long axis. The
HOMO node plane along the long axis generates sign changes at shifts of about 1.6 Å and
3.9 Å along the long axis, whereas, along the short axis, a sign change occurs around 2
Å of displacement. We find that sign changes occur in an approximately periodic pattern
starting from the point with maximal overlap. We find that in all pigments, the signs
of the transfer parameters in Fig. 3.14 are well defined because the stacking geometries
are never close to th = 0 or te = 0. A more precise method of calculating the transfer
parameters for each compound has been discussed above.
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Figure 3.14: Left: Calculated signs of the transfer parameter tL = te for two stacked
PTCDI molecules at a distance of 3.4 Å along their normal: Regions of positive trans-
fer parameter (white), negative transfer parameter (gray), and contour lines of the sign
changes (red). The dots represent the geometric offset with respect to the next molecule
in the stack for α-PTCDA, DDTP, Me-PTCDI, PB31, PTCDI, and PR149, as annoted.
The DIP location is indicated by an arrow since the lateral offset is outside the range of
the figure. Right: the same but for the transfer tH = −th between the HOMO states of
two stacked PTCDI molecules.

3.3.2 Electronic band structure

The electronic band structure arising from transfer along the stacking direction has the
following dispersion:

EHOMO(k) = EH + 2tH cos k · a, (3.10)

ELUMO(k) = EL + 2tL cosk · a, (3.11)

Egap(k) = EL −EH + 2(tL − tH) cosk · a. (3.12)
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Figure 3.15: As Fig. 3.11, but for PTCDI
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Figure 3.16: Electronic band structure of the model compounds based on B3LYP/TZ
calculations for a stacked dimer in a geometry compatible with the respective crystalline
phase.
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For the model compounds, Fig. 3.16 visualizes the resulting valence band EHOMO(k)
and the conduction band ELUMO(k) over the first Brillouin zone. The energies EH and
EL are defined as the average energies of the pairs of frontier orbitals in a stack with a
geometry compatible to the crystalline phase and the transfer parameters correspond to
half of their splitting calculated with B3LYP/TZ; compare Table 3.6. PTCDA is the only
material where the two transfer parameters tH and tL have the same sign, so that the gap
between valence and conduction band has a particularly small dispersion.

In a single particle picture, optical excitations correspond to vertical transition between
valence and conduction band with the following first and second moments:

〈Egap〉 = EL −EH, (3.13)

〈(∆Egap)
2〉 = 2(tL − tH)2. (3.14)

In Sec. 4.5, we shall discuss sum rules arising from our exciton model and compare them
with eqs. (3.13) and (3.14).

3.3.3 Transition dipoles in stacked dimers

Using TD-DFT, the transition energies and transition dipoles are calculated in a frozen
geometry relying on the Born-Oppenheimer approximation which gives eigenvalues with-
out influence of the internal vibrational modes. Following the same reasoning as Ishikawa
et al. [113] it is possible to write a Hamiltonian for the resulting transition energies
between localized HOMO and LUMO states in the dimer as

H =







EF W te th
W EF th te
te th ECT V
th te V ECT







(3.15)

where EF and ECT are the energies of the Frenkel and CT exciton transition, respectively.
The matrix elements W and V describe the transfer of a neutral excitation and of a CT
exciton, respectively. A basis change to orbitals with well-defined parity can be performed
with a transformation matrix

T =
1√
2







1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1






. (3.16)

giving a transformed Hamiltonian

H ′ = T †HT =







EF +W 0 te + th 0
0 EF −W 0 te − th

te + th 0 ECT + V 0
0 te − th 0 ECT − V






. (3.17)
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This Hamiltonian can now be decoupled into two independent subblocks, one for dipole-
allowed transitions and one for dipole-forbidden transitions,

H
(P=−1)
all. =

(
EF +W te + th
te + th ECT

)

, (3.18)

H
(P=+1)
forb. =

(
EF −W te − th
te − th ECT

)

. (3.19)

This gives four independent equations which together with the calculated transfer integrals
can be used to calculate all elements of the Hamiltonian matrix. The solutions of the two
Hamiltonians give the eigenvalues

Eall.
1,2 =

EF + ECT +W + V

2
± 1

2

√

(EF +W − ECT − V )2 + 4(te + th)2 (3.20)

Eforb.
1,2 =

EF + ECT −W − V

2
± 1

2

√

(EF −W − ECT + V )2 + 4(te − th)2 (3.21)

By using TD-DFT values for the transition energies E1,2 and transfer integrals from Table
3.6 we obtain all the matrix elements for each one, see Table 3.7.

compound EF ECT W V
(eV) (eV) (eV) (eV)

PTCDA 2.466 2.104 0.152 0.012
DDTP 2.570 2.343 0.163 0.004
Me-PTCDI 2.448 2.086 0.145 0.006
PB31 2.380 2.025 0.105 0.010
PTCDI 2.465 2.117 0.108 0.010
PR149 2.455 2.145 0.110 0.002
DIP 2.379 2.183 0.057 0.001

Table 3.7: Elements of the matrix (3.18) and (3.19) obtained at the B3LYP/TZ level,
except for PR149 which was obtained at the B3LYP/DZ level.

3.3.4 Transition dipoles derived from TD-DFT

In the configuration interaction of singlets (CIS) scheme, the singlets can be determined
by the spatial orbitals ψi(r, σ) according to

|So,u〉 = |ψo → ψu〉 =
1√
2

{

|ψ1(r, α)ψ1(r, β) . . . ψu(r, α)ψo(r, β) . . . 〉(−) +

|ψ1(r, α)ψ1(r, β) . . . ψo(r, α)ψu(r, β) . . . 〉(−)
}

(3.22)
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and the molecular singlet states can be expressed as

|Sf〉 =
∑

o,u

Co,u|ψo → ψu〉 (3.23)

where Co,u are the coefficients where o runs over all occupied spatial MOs and u over
all unoccupied ones (compare [18], page 103). With this, it is possible to construct four
transitions in a molecule pair which are a sum of these transitions expressed in terms of
the electronic orbitals. Within the same parity, these transitions are allowed to mix

|Sw/s
u 〉 = C

w/s
1u |Hu → Lg〉 + C

w/s
2u |Hg → Lu〉 (3.24)

|Sg〉 = C1g|Hu → Lu〉 + C2g|Hg → Lg〉 (3.25)

where C
w/s
1/2,u/g is the configuration interaction (CI) coefficients for respective transfers,

{u, g} represents the parities ungerade and gerade, respectively, and w/s denoted the
weak and strong interactions. The contribution from other orbitals is less than 3% except
for PR149. In PR149 dimers, the specific orientation of the functional groups mixes tran-
sitions based on HOMO and LUMO of the monomers with transitions involving HOMO-1
and HOMO-2 states, so that an assignment of the transition dipoles from the B3LYP/TZ
TD-DFT calculations would require a larger model Hamiltonian than eq. 3.15. As this
problem is less disturbing in a smaller DZ variational basis, we have analyzed this specific
compound with TD-DFT calculations at the B3LYP/DZ level.

For a pair of stacked molecules, the transition energies and the transition dipoles can
be obtained from different computational schemes, including configuration interaction of
singles (CIS), time-dependent Hartree-Fock (TD-HF), or TD-DFT, as reported in Table
3.8 for α-PTCDA. The two Hartree-Fock based schemes place the CT states well above the
neutral excitation with the large oscillator strength, whereas TD-DFT with the B3LYP
hybrid functional results in a CT transition below the neutral excitation, and from the
exciton model discussed in Chaps. 4 and 5 we find the CT states in a range of about
±0.25 eV around the neutral excitations. From the large differences between different
ab initio schemes for the computation of the transition energies, it is clear that all three
attempts to compare a calculation for a pair of molecules to the crystalline phase have
their weaknesses, resulting both from the incomplete geometric model and from known
systematic deficiencies of the methods used.

As an example, the calculated orbitals and transitions in α-PTCDA with TD-DFT
calculations at the B3LYP/TZ level, are having the configuration:

|Cw
1u|2 = 50.1% Hg = HOMO − 1 → Lu = LUMO

}

fosc. = 0.015, E=2.116 eV|Cw
2u|2 = 49.7% Hu = HOMO → Lg = LUMO + 1

|Cs
1u|2 = 48.8% Hu = HOMO → Lg = LUMO + 1 }

fosc. = 0.956, E=2.618 eV|Cs
2u|2 = 48.3% Hg = HOMO − 1 → Lu = LUMO

where transitions with coefficients below 1% are not reported.
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Figure 3.17: The energies of the Kohn-Sham orbitals closest to the bandgap for PTCDA
and Me-PTCDI, in eV. The black arrows indicate the allowed transitions and the hori-
zontal lines represent further occupied and unoccupied electronic orbitals.

Due to symmetry reasons only the au states can have a non-vanishing transition dipole.
The electronic transition dipole for the two allowed states can be derived by using eqs.
(3.24,3.25)

µw = Cw
1u〈Lg|µ̂|Hu〉 + Cw

2u〈Lu|µ̂|Hg〉 (3.26)

µs = Cs
1u〈Lu|µ̂|Hg〉 + Cs

2u〈Lg|µ̂|Hu〉 (3.27)

where the H and L orbitals always have different parities.

compound dipole-allowed forbidden
E fosc E fosc E E
eV 1 eV 1 eV eV

CIS 3.586 2.013 4.211 0.040 3.201 4.217
TD-HF 3.270 1.489 4.166 0.036 2.954 4.190
TD-DFT 2.116 0.015 2.618 0.956 2.078 2.328

Table 3.8: Transition energies in a stack of two PTCDA molecules, obtained with CIS,
TD-HF and TD-DFT based on the B3LYP hybrid functional, using a TZ variational basis.
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3.3. ELECTRONIC INTERACTION BETWEEN STACKED MOLECULES

Inside the crystal, the polarization of the surroundings induces a red shift of CT
transitions by about 2 eV with respect to an isolated dimer [114, 115, 116]. Moreover, the
neutral molecular excitations in the crystal are red-shifted by nearly 0.5 eV with respect
to a monomer in weakly interacting surroundings [117], and with TD-DFT it can be
investigated how different neighbors contribute to this effect [118]. For any microscopic
investigation of a stacked dimer, the resulting transition energies will necessarily suffer
from large energetic offsets with respect to a more complete description of the crystalline
phase, so that approaches like CIS, TD-HF and TD-DFT can only generate raw data
which will require further interpretation.

For TD-DFT, it is well known that the wrong asymptotics of the exchange-correlation
functional is responsible for a distance dependence of the CT energy deviating from the
−1/r behavior expected from the Coulomb interaction [119]. However, from Table 3.8, it
is clear that this systematic deficiency of TD-DFT together with the missing polarizable
surroundings brings the weakly absorbing CT states rather close to the strongly absorbing
neutral excitation, resembling the situation in the crystal discussed in Chaps. 4 and 5.
Due to this compensation of errors, TD-DFT calculations of an isolated dimer become
a quantitatively meaningful approach for an investigation of basic features of neutral
excitations and CT states in the crystalline phase. Moreover, they have the advantage that
the transitions of interest are well approximated by the HOMO-LUMO based Hamiltonian
(3.15), whereas in the HF based schemes, one of the lowest dipole-allowed transitions has
more than 10% admixture of transitions arising from other pairs of molecular orbitals.

compound dipole-allowed forbidden
E fosc E fosc E E
eV 1 eV 1 eV eV

α-PTCDA 2.116 0.015 2.618 0.956 2.078 2.328
DDTP 2.332 0.043 2.616 0.637 2.233 2.514
Me-PTCDI 2.064 0.067 2.622 1.021 2.057 2.326
PB31 1.957 0.221 2.564 1.195 2.004 2.286
PTCDI 2.101 0.098 2.598 1.066 2.083 2.382
PR149 2.127 0.062 2.586 0.852 2.125 2.363
DIP 2.150 0.116 2.469 1.141 2.714 2.328

Table 3.9: Vertical transition energies in a stack of two molecules, in a geometry compat-
ible with the monoclinic crystal phase, obtained with TD-DFT at the B3LYP/TZ level,
except for PR149, which has been calculated with B3LYP/DZ.

In Table 3.9, we report the transition energies in stacked dimers of different perylene
compounds, obtained with TD-DFT at the B3LYP/TZ level. Among the two transitions
of each parity, the lower is always dominated by CT transitions, and the higher by neutral
molecular excitations, in keeping with the large difference between the respective oscillator
strengths of the dipole-allowed transitions. Together with the projection of the transitions
onto pairs of Kohn-Sham orbitals, the TD-DFT results allow for the determination of
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CHAPTER 3. CRYSTAL STRUCTURE OF PERYLENE COMPOUNDS

the matrix elements W and V in eqs. (3.15, 3.18, 3.19) and for an assignment of the
transition dipoles between the localized frontier orbitals of the two molecules, compare the
visualization for PTCDA and Me-PTCDI in Figs. 3.18 and 3.19. In all compounds except
for PTCDA, both dipole-allowed transitions in Table 3.9 derive the main part of their
oscillator strength from the large transition dipoles of the neutral molecular excitations.
Thus, in general the weaker among the two dipole-allowed transitions is not a suitable
measure for the transition dipole of the CT states. For Me-PTCDI, the four coplanar
transition dipoles in Fig. 3.19 reveal the specific linear superpositions of µF and µCT

realized in the dimer transitions in Table 3.9. The orientation of the transition dipoles
follows intuitive expectations: For the strong molecular transitions, they are aligned with
the long axis of the molecule, just like the molecular HOMO-LUMO transition dipole,
whereas the transition dipole of the CT state has an orientation rather close to the stacking
direction, compare Table 3.10. Due to the larger off-diagonal matrix element (te + th) in
eq. (3.18) with respect to PTCDA, the strongest transition obtained in TD-DFT carries
a larger contribution from µCT, so that the angle between its transition dipole and µF is
somewhat larger.

compound neutral excitation CT state
EF µF αlong ECT µCT αstack

eV Debye deg. eV Debye deg.
α-PTCDA 2.470 6.93 1.8 2.101 0.94 15.0
DDTP 2.499 5.86 4.6 2.347 0.42 62.2
Me-PTCDI 2.429 7.42 1.6 2.106 0.68 18.4
PB31 2.440 8.62 1.1 1.965 1.06 5.2
PTCDI 2.453 7.69 3.0 2.129 1.05 13.6
PR149 2.452 6.76 0.6 2.149 0.37 15.5
DIP 2.390 8.20 2.0 2.171 0.03 63.9

Table 3.10: Vertical transition energies and transition dipoles of neutral molecular excita-
tions and CT states in a stacked dimer determined from the values in Table 3.9, together
with the orientation of the transition dipoles, expressed in terms of the angle αlong be-
tween µF and the long axis of the molecules and the angle αstack between µCT and the
stacking direction.

For all compounds, the transition dipoles obtained with TD-DFT can be found in
Table 3.11. For the case of α-PTCDA dipole allowed transitions are illustrated in Fig.
3.18. In this figure, we can see that the transition dipole of the neutral excitation µF is
directed along the long axis of the molecule, whereas the transition dipole of the charge
transfer state, µCT, is mainly contributing along the stacking direction.

In DIP, the transition dipole of the CT state is very small, and as opposed to the other
compounds, it forms a rather large angle with the stacking direction, two features arising
from the small geometric overlap between the molecules in the stack. Residual deviations
from the ideal orientation of the transition dipoles for neutral excitation can be related

71



3.3. ELECTRONIC INTERACTION BETWEEN STACKED MOLECULES

Figure 3.18: Transition dipoles in a stacked dimer of PTCDA. Red: transition dipole µF

of neutral molecular excitation, green: transition dipole µCT of CT transition, orange:
transition dipoles calculated with TD-DFT.

µCT

µF

Figure 3.19: Transition dipoles in a stacked dimer of Me-PTCDI. Red: transition dipole
µF of neutral molecular excitation, green: transition dipole µCT of CT transition, orange:
transition dipoles calculated with TD-DFT.

to the incomplete covering of the lowest transitions found in TD-DFT by the four states
underlying eqs. (3.15, 3.18, 3.19.)

In the exciton model developed in the following, the ratio of the transition dipoles
µCT/µF will be taken from the values in Table 3.11. Concerning the direction of these
dipoles, we shall assume that the neutral excitation has a transition dipole oriented exactly
along the long axis of the molecule, whereas the CT states are handled with an orientation
of their transition dipoles deduced from TD-DFT. As will be explained in Chaps. 4 and
5 in more detail, absolute values of the transition dipoles in the exciton model will be
determined from a comparison to spectroscopic observations.
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compound µF
xx µF

yy µF
zz µCT

xx µCT
yy µCT

zz

PTCDA 4.653 5.135 -0.165 0.541 -0.167 -0.756
DDTP 3.383 4.985 -0.018 0.3495 -0.12 -0.172
Me-PTCDI 2.441 7.002 -0.172 0.473 0.115 -0.471
PB31 6.964 5.082 0.116 0.654 0.201 -0.816
PTCDI 7.553 1.268 -0.371 0.609 -0.317 -0.790
PR149 6.716 0.809 0.028 0.092 0.221 -0.282
DIP 8.194 0.380 -0.053 -0.015 0.010 -0.024

Table 3.11: Transition dipoles obtained with TD-DFT calculations at the B3LYP/TZ
level, except for PR149 where B3LYP/DZ was used.

3.4 Exciton transfer

The approximate magnitude of the Frenkel transfer integral between two molecules in the
crystal Tnα;mβ can be estimated by using the unscreened Coulomb interaction between
the transition dipoles dα and dβ in the point-dipole approximation [120, 121]

Tnα;mβ(r) =
1

4πǫ0ǫ(r)r5

(
(dα · bβ)r2 − 3(dα · r)(dβ · r)

)
(3.28)

where r = Rnα;mβ is the vector between the molecule α in unit cell n and molecule β in
unit cell m.

In an anisotropic dielectric medium, a generalization to the screened interaction be-
tween point dipoles can most easily be defined by resolving the transition dipole dα into
a distribution of atomic overlap charges qiα on atom i in the molecule α. For PTCDA,
this generalization has been discussed already [122]

Tnα;mβ =
1

4πǫ0
√
ǫxxǫyyǫzz

∑

i,j

qiαqjβ
(

x2
iα,jβ

ǫxx
+

y2
iα,jβ

ǫyy
+

z2
iα,jβ

ǫzz

)1/2
(3.29)

where xiα,jβ = xiα − xjβ, etc. are the Cartesian components of the distance between
i-th atom in the molecule, and the j-th atom in the molecule β. The evaluation of
this expression requires well founded values for the diagonal elements of the anisotropic
dielectric tensor [123]. To the best of our knowledge, experimental observations of the
anisotropy of the dielectric tensor exist only for PTCDA so that a similar calculation is
not possible for other compounds. Therefore, in the exciton model, the exciton transfer
parameters will not be calculated microscopically but they will be obtained from a sum
rule (Sec. 4.5) applied to the observed data. In all compounds, the values derived from
the sum rule will be somewhat smaller than the upper limit of the interaction between
point dipoles according to tabulated values in Table 3.11.
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Chapter 4

Exciton Model

In this chapter, an exciton model involving Frenkel excitons and charge transfer states
will be introduced. As an overview, other related models will be discussed in the first
section 4.1. In the following section 4.2 the pure Frenkel Hamiltonian of the model will be
constructed and fundamental concepts will be discussed such as transformation into wave-
vector representation. In the subsequent section 4.3, the charge transfer states and their
mixing with the Frenkel excitons is added to the pure Frenkel model. For the construction
of the F-CT Hamiltonian, a set of CT operators will be introduced which will be Fourier
transformed to Bloch waves. In section 4.4 the transition dipole moments for the model
will be derived using these new operators presented in previous sections. On that basis,
calculated optical properties, such as dielectric function and refractive index etc. will be
discussed and also the implementation process of the model into a numerical code.

4.1 Overview

For a single molecule, the calculation of the optical properties is fairly easy since the
dielectric function and the absorption are based on simple Poisson distributions over
internal vibrations discussed in Chap. 2. However, in a crystalline molecular pigment, the
possible transitions are modified by inter-molecular interactions, including new excitation
channels like charge transfer between neighboring sites. Due to the complexity of this
task, several approximate models have been discussed in the literature, highlighting the
importance of specific phenomena under simplifying assumptions.

Early attempts to analyze the spectroscopic properties of PTCDA used 3D Wannier-
Mott excitons to model optical absorption [124] and electroabsorption [125] in thin films
confined between other molecular materials. For a large dielectric constant, the electron-
hole interaction in the Wannier-Mott exciton is screened, resulting in an exciton binding
energy of the order of 0.1 eV. This results in an exciton Bohr radius of 12 Å which would
require an exciton distribution over several molecular layers. This approach is suitable
for inorganic semiconductors where covalent bonds allow the electrons to spread over a
larger volume.
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Since the weak intermolecular interactions do not allow for transfers over long dis-
tances, an improved approach found was a small radius exciton model. Such an approach
to organic materials was introduced when Bulovic et al. presented a model using self
trapped excitons and CT excitons [12]. Soos et al. [126] and Hennessy et al. [59] further
developed this and introduced the concept of mixing of the Frenkel and the CT states
for a pair of molecules. Later on, this dimer model was extended by Hoffmann et al.
[127, 128] to a 1D stack geometry and the elongations of an effective internal vibration in
the isolated configuration.

Vragov́ıc et al. [129, 122] found that for PTCDA, the exciton transfer between different
basis molecules of the crystal lattice results in different shapes of the diagonal elements
of the dielectric function, in qualitative agreement with ellipsometry data obtained on
single crystals [130]. By introducing a pure Frenkel model with two molecules per unit
cell it was possible to reproduce the main features of the optical spectrum and of the
photoluminescence spectra observed at low temperature. This leads to the question under
which conditions the CT states becomes important for modelling perylene derivatives. The
dipole moment of the CT state is very small compared to the HOMO-LUMO transition
within a molecule. Nevertheless, since the CT states couple to neutral excitations, the
resulting mixed states are able to inherit oscillator strength from the Frenkel contributions
[131, 127]. This will increase the importance of the CT states if they are close to resonant
with neutral excitations. The mixing depends on the size of electron and hole transfer.
In Chap. 3 we found that these transfers are particularly small in PTCDA, so that
Frenkel and CT states are hardly coupled. However, even though PTCDA does not have
large enough transfer integrals to generate an efficient coupling between Frenkel and CT
states, Table 3.6 shows that the situation in other pigments will be different. For similar
molecules, such as Me-PTCDI [57] and DIP [11], it was demonstrated that a pure Frenkel
model cannot reproduce the optical observables.

Previous microscopic calculations of dielectric function and PL spectra raise the fun-
damental question under which conditions separate F and CT states or their mixing via
electron or hole transfer determine the optical observables. In the following, we extend
a Frenkel-CT approach developed earlier for a one-dimensional stack to a crystal model
accounting for both basis molecules in the unit cell, combining two key ingredients ap-
plied earlier to the calculation of the anisotropic optical response of perylene compounds
[127, 57, 129, 122]. The deformation of each molecule in its anionic, cationic and optically
excited states is deduced from DFT calculations, parameterized in terms of the elonga-
tion of an effective internal vibration. DFT and Hartree-Fock calculations applied to a
pair of stacked molecules reveal intermolecular parameters like electron transfer and hole
transfer. In such a stacked dimer, the transition dipole between the electronic ground
state and the CT state and the transition dipole of neutral molecular excitations can be
derived from DFT and TD-DFT calculations. The transfer of a neutral molecular ex-
citation towards different sites is constrained by a sum rule relating the center of mass
of the absorption band to the molecular deformation and excitation transfer, so that the
required transfer parameter can be deduced in a controlled way from the observed spectra
[132, 133, 134]. Based on these constraints for the quantities entering the exciton model,
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we use the energies of neutral excitations and CT states as the only free parameters. Our
approach is limited to transitions arising from the highest molecular orbital (HOMO) and
lowest occupied molecular orbitals (LUMO). For DIP, higher transitions and the respec-
tive CT states seem to have a minor influence on the lowest absorption band [11], but for
the other perylene compounds investigated in the present work, we found little evidence
for a similar phenomenon.

4.2 Frenkel Hamiltonian

The Frenkel exciton, named after the Russian physicist Yakov Frenkel, can be applied
when the dielectric function of the material is small and the Coulomb interaction between
electrons and holes is very strong. This results in a relatively small exciton size, of the
same order as a crystal unit cell. Applied to molecular materials, this model indicates
that electron and hole reside on the same molecule with a binding energy in the range of
1 eV. Therefore the Frenkel exciton fulfills the criteria of a small radius model. As will
be discussed below, in the present context a Frenkel exciton is a Bloch wave composed of
localized molecular excitations.

The starting point of the model is a crystal in its lowest energy state where all molecules
in the system are in their electronic and vibronic ground state. Within the effective mode
model, as a consequence of the BO-approximation, it is possible to factorize the electronic
ground state of the crystal into the product of the ground state wave function of the
constituting molecules,

| g〉 =
∏

nα

| φg
nαχ

0g

nα〉, (4.1)

where φg
nα is the electronic wave function in the ground state of molecule α ∈ {A,B} in

unit cell n and χ
0g
nα the lowest vibronic eigenstate of an effective internal vibration. The

factorized ground state | g〉 makes it possible to analyze optical excitations in terms of
localized molecular transitions towards vibronic eigenstates associated with the excited
electron state. We introduce creation operators which excite a specific molecule into the
electronic excited state

b†
nανe

| φg
nαχ

0g

nα〉 =| φe
nαχ

νe

nα〉, (4.2)

where φe
nα is the electronic part of the wave function in the excited electronic configuration,

and χeνe
nα the νeth vibrational state in the excited state potential of molecule α in the unit

cell n. The application of this creation operator to a system in its ground state results in
a factorization of the excited state into molecular wave functions

b†
nανe

| g〉 =| φe
nαχ

νe

nα〉 | φg
nβχ

0g

nβ〉 ×
∏

m 6=n

| φg
mαχ

0g

mα | φg
mβχ

0g

mβ〉, (4.3)

where α 6= β, see Fig. 4.1 for a visualization. In the Heitler-London approximation
[120, 135], these product states form the basis of our formulation of the Frenkel exciton
Hamiltonian. In this model we assume that both the basis for the electronic transition
and the internal molecular vibration reside on the same molecule [127] because of the
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relatively large value of the exciton-phonon coupling constant (≈ 1), thus neglecting any
configuration in which they are placed on different molecular sites [57, 136, 137].

Figure 4.1: Visualization of the operator b†
n;Aνe

operating on a PTCDA crystal in its
ground state |g〉. The molecule in unit cell n in stack A is excited to the first excited
state with vibronic level νe. The molecules still in their ground state are depicted with
wires and the excited molecule is visualized by a ball-and-stick scheme.

The resulting pure Frenkel exciton Hamiltonian for the 3D molecular crystal, with two
molecules per unit cell, reads

HF =
∑

n

∑

α=A,B

∑

νe

EF
0gνe

b†
nανe

bnανe
+

∑

nανe

∑

mβµe

tnανe,mβµe
b†
nανe

bmβµe
(4.4)

where EF
0gνe

= EF
0g0e

+νeh̄ωeff is the exciton on-site energy in the νeth vibronic level. EF
0g0e

is the transition energy between the lowest vibronic levels |χ0g
nα〉 and |χ0e

nα〉 of the free
molecule α in cell n, corresponding to excitation between the two harmonic oscillators
potentials in Fig. 2.2. In this notation, the gas-to-crystal shift shall be included by a
suitable choice of the lowest molecular transition energy EF

0g0e
. The last term, νeh̄ωeff , is

the vibronic energy of the vibronic level νe, where h̄ωeff is the energy difference between
consecutive vibronic levels, compare Fig. 2.2. The Hamiltonian HF is based on localized
transitions in eq. (4.3) excited from the ground state | g〉 in eq. (4.1) using the exciton
creation operators in eq. (4.2). This corresponds to the realistic assumption that kBT ≪
h̄ωeff since the single exciton state is still referring to a crystal ground state without any
electronic or vibronic excitation.

The rule for the transfer matrix element tnανe;mβµe
is that it has to return the molecule

β in unit cell m from excited level µe into the lowest vibronic level of the electronic ground
state, and the molecule α in unit cell n is moved into an excitonic state in the vibronic
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sublevel νe of the excited state potential. As before, applying the BO-approximation, it
is possible to divide the transfer matrix element into an electronic and a vibronic part

tnανe;mβµe
= 〈gbnανe

g | HF | b†
mβµe

g〉 =

= 〈φe
nαφ

g
nβ

∏

n6=n′

φg
n′αφ

g
n′β | HF | φg

mαφ
e
mβ

∏

m 6=m′

φg
m′αφ

g
m′β〉

︸ ︷︷ ︸

Tnα;mβ

〈χνe

nα | χ0g

nα〉
︸ ︷︷ ︸

S0gνe

〈χ0g

mα | χµe

mα〉
︸ ︷︷ ︸

Sµe0g

= Tnα;mβS0gνe
Sµe0g

, (4.5)

where S0gνe
and Sµe0g

are the vibronic Franck-Condon factors described before and Tnα;mβ

is the transfer integral of neutral excited excitons discussed in Sec. 3.4.
As the system is periodic we can perform a total Fourier transformation into wave-

vector representation. An operator for the excitation of a Bloch wave composed of local-
ized excitations can be introduced as

b†
kανe

=
1√
N

∑

n

e−ikRn,αb†
nανe;nα0g

, (4.6)

where Rn,α = Rn+rα is the position of the α molecule in the crystal unit cell n. When the
Hamiltonian is Fourier transformed, it decouples into independent sub-blocks for different
wave vectors k, see Appendix A for a detailed description of the Fourier transform, and
the k-space Frenkel Hamiltonian can be written as

HF(k) =
∑

ανe

EF
0gνe

b†
kανe

bkανe
+

∑

ανe,βµe

S0gνe
S0gµe

Tαβ(k)b†
kανe

bkβµe
(4.7)

where
Tαβ(k) =

∑

Rnα;mβ 6=0

e−ikRnα;mβTnα;mβ (4.8)

and Rnα;mβ = Rnα − Rmβ is the distance vector between molecules nα and mβ. Tαβ(k)
is the discrete Fourier transform of the transfer matrix element summed over the relative
position Rnα;mβ. Since perylene crystals have a center of symmetry the exciton transfer
matrix element Tαβ(k) are real and symmetric with respect to the indices α and β [120].

With respect to the basis molecules and their creation operators b†
kAνe

and b†
kBνe

to-
gether with the respective annhiliation operators, this Hamiltonian has the following block
structure:

HF(k) = HF
AA(k)b†

kAνe
bkAµe

+HF
AB(k)b†

kAνe
bkBµe

+

HF
BA(k)b†

kBνe
bkAµe

+HF
BB(k)b†

kBνe
bkBµe

(4.9)

or in terms of the matrix elements involved

HF(k) =

(
HF

AA(k) HF
BA(k)

HF
AB(k) HF

BB(k)

)

, (4.10)
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where the block HF
AA(k) contains the possible transfer of the optical excitation from a

basis molecule A to all A molecules in the other unit cells, and similarly for the other
blocks. Each block can now be written as

HF
AA;νeµe

(k) = HF
BB;νeµe

(k) = EF
0gνe

δνeµe
+ S0gνe

S0gµe
TAA(k), (4.11)

HF
AB;νeµe

(k) = HF
BA;νeµe

(k) = S0gνe
S0gµe

TAB(k) (4.12)

The Frenkel excitons on the A and B basis molecules are coupled by the off-diagonal
element HF

AB(k), but a decoupling can be achieved by a superposition of both basis
molecules governed by Hamiltonians

HF
AA(k) ±HF

AB(k). (4.13)

In terms of the creation operator of Frenkel excitons, this further block diagonalization
can be expressed by a superposition of Bloch waves involving A or B basis molecules:

b†
kξνe

=
1√
2
(b†kAνe

± b†
kBνe

) (4.14)

where ξ = y governed by the upper sign represents Bloch waves with transition dipoles
exclusively along y, coinciding with the screw axis in the monoclinic space group, and
the difference indexed ξ = x has molecular transition dipoles along x and CT transition
dipoles in the xz plane, compare Fig. 3.1. Because the Hamiltonian (4.10) is invariant
under exchange of the two basis molecules A and B, all eigenstates have a well-defined
symmetry with respect to this operation. After the rotation the Hamiltonian is separated
into two non-zero blocks

HF(k) =






b†
kyνe

b†
kxνe

bkyνe
HF

AA(k) +HF
AB(k) 0

bkxνe
0 HF

AA(k) −HF
AB(k)




 (4.15)

where the upper left block is the block Hamiltonian for transitions with the transition
dipole along the y direction and the lower right block for the x direction. With this we
achieve a separation of both parts, so that they can be solved independently from each
other. Diagonalization of the Hamiltonian (4.15) by unitary transformation with respect
to the vibrational sublevels gives

b†
kxζe

=
∑

νe

uνeζe
(k, x)b†

kxνe
(4.16)

and
b†
kyζe

=
∑

νe

uνeζe
(k, y)b†

kyνe
(4.17)

where ζe is the vibrational sublevel for the excitons when diagonalizing the sub-blocks of
(4.15) and uνeζe

(k, ye) are the eigenvectors.
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4.3 Interference between Frenkel excitons and CT

transitions

As stated before, the Frenkel model is not sufficient for explaining the spectra of certain
molecular crystals, especially for those with a large CT influence. One example is the DIP
molecule where the mixing of the two states is large enough to have a noticeable impact
on the shape of the optical spectra. Fig. 4.2 compares the line shape derived from the
pure Frenkel exciton model with the observed spectra of DIP, revealing the limitations of
this approach [11].
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Figure 4.2: Experimental out-of-plane component ǫ2 of a DIP film deposited on SiO2 (solid
line) and the results of the pure Frenkel model (dashed line) with parameters EF

00 = 2.21
eV, h̄ωeff = 0.17 eV, S = 0.87, and T = 0.142 eV [11], so that the lowest subband and the
average transition energy of the calculated spectra coincide with the measured values.

In this section we will build on the Frenkel model and develop a model including CT
states which also allows these two exciton states to interfere. The charge transfers are
relative weak over longer distances in the stack. As a result of this we will restrict the
CT transfers to closest neighbors along the stacking direction. However, even though we
will include transfers to neighboring molecules the model will still be considered a small
radius model.

The full Hamiltonian with CT states, and interference between Frenkel and CT states,
can be described with a three-part Hamiltonian

Htot = HF +HCT +HF−CT, (4.18)

where HF is the pure Frenkel state Hamiltonian given previously in eq. (4.4), HCT the
pure CT Hamiltonian, and HF−CT the part of the Hamiltonian mixing Frenkel and CT
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4.3. INTERFERENCE BETWEEN FRENKEL EXCITONS AND CT TRANSITIONS

states. In order to excite the crystal ground state into configuration involving opposite
charges on adjacent stack neighbors, new operators for the CT states are introduced. An
anionic electronic configuration at site Rn will be denoted as |φ−

nα〉, and a cationic state
on the neighboring site Rn+a, as |φ+

n±1,α〉 together with the vibronic levels η− and γ+ on
the respective molecules:

c†
nαη−;n+1,αγ+

| g〉 =| φ−
n,αχ

η−
n,α〉 | φg

n,βχ
0g

n,β〉 | φ+
n+1,αχ

γ+

n+1,α〉 | φg
n+1,βχ

0g

n+1,β〉 ×
∏

m 6=n,n+1

| φg
m,αχ

0g

m,α〉 | φg
m,βχ

0g

m,β〉. (4.19)

The operator for a charge separation in the other stack direction is written as

c†
nαη−;n−1,αγ+

| g〉 =| φ+
n−1,αχ

γ+

n−1,α〉 | φg
n−1,βχ

0g

n−1,β〉 | φ−
n,αχ

η−
n,α〉 | φg

n,βχ
0g

n,β〉 ×
∏

m 6=n,n−1

| φg
m,αχ

0g

m,α〉 | φg
m,βχ

0g

m,β〉. (4.20)

where c†
nαη−;n±1,αγ+

(cnαη−;n±1,αγ+
) is the creation (annihilation) operator for the CT state

with an electron at lattice site n and a hole at lattice site n± 1 in stack α. Based on the
Huang-Rhys factors in Table 2.5, setting the cutoff for the squared Franck-Condon factors
to 10−6, it is sufficient to include vibronic levels γ+ in the range γ+ = 0, 1, . . . , γmax

+ and
vibronic level of the anion η− = 0, 1, . . . , ηmax

− with γmax
+ = ηmax

− = 8. These operators
can be pictured as a transfer of a hole from a basis molecule α in unit cell n to the same
basis molecule in the neighboring unit cell n + 1 or n− 1, involving the vibronic level γ+

of the cationic molecule and the vibronic level η− of the anionic molecule, see Fig 4.3.
Notice that charge transfer between different basis molecules is not included because it
is not expected to be relevant in this specific monoclinic arrangement of the two basis
molecules.

The excitations described by the creation operators in eqs. (4.19 and 4.20) are the
only states with a transition dipole towards the electronic ground state, whereas states
involving vibronic excitations at sites differing from the molecules with modified electronic
configurations cannot be excited from the electronic ground state, so that they will be
ignored in the following.

The charge transfer Hamiltonian can now be written as

HCT =
∑

α

∑

n

∑

γ+η−

ECT
γ+η−

(

c†
nαη−;n+1,αγ+

cnαη−;n+1,αγ+
+c†

nαη−;n−1,αγ+
cnαη−;n−1,αγ+

)

(4.21)

where ECT
γ+η− = ECT

00 +(γ+ + η−)h̄ω is the on-site energy of a CT exciton in vibronic levels

η− and γ+ for the anionic and the cationic sites, and ECT
00 is the energy difference between

the lowest vibronic levels in the electronic ground and excited states. The Hamiltonian
which includes mixing between neutral excitations and CT states via electron and hole
transfer can be written as

HF−CT =
∑

α

∑

nνe

∑

mγ+η−

(c†
mαη−;m−1,αγ+

bnανe
(δmnt

′
h + δm−1,nt

′
e) +
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Figure 4.3: Visualization of operator c†
nAη−;n−1,Aγ+

operating on a crystal in the ground
state. The A molecule in the nth unit cell is excited to an anionic state with vibronic level
η− and the A molecule in the (n−1)th unit cell is excited to a cationic state with vibronic
level γ+. The molecules in their ground states are depicted with wires and the molecules
with modified electronic configurations are visualized by a ball-and-stick scheme.

c†
mαη−;m+1,αγ+

bnανe
(δmnt

′
h + δm+1,nt

′
e)) + h.c. (4.22)

where
t′h = 〈c†

nαη−;n+1,αγ+
g | HF−CT | b†

nανe
g〉 = 〈χ+γ+

n+1 | χg0g

n+1〉
︸ ︷︷ ︸

S+
0gγ+

〈χ−η−
n

| χeνe
n

〉
︸ ︷︷ ︸

S−
νeη−

·

〈φ+
n+1,αφ

−
n,αφ

g
n+1,βφ

e
n,β

∏

n′ 6=n,n+1

φg0
n′αφ

g0
n′β | HF−CT | φg

mαφ
g
mβ〉〈

∏

m′ 6=m

φg
m′αφ

g
m′β〉

︸ ︷︷ ︸

th

(4.23)

and similar for t′e, so we receive

t′h = thS0gγ+
Sνeη− (4.24)

t′e = teS0gη−Sνeγ+
(4.25)

where th and te are the transfer integrals of a hole and an electron, respectively. The
transfer of the CT states is neglected here since that would imply transfer of two charge
carriers simultaneously, with very small matrix elements. As the Frenkel part HF of
the model Hamiltonian is restricted to vibronic states having a transition dipole towards
the electronic and vibrational ground state, vibronic overlap factors between an excited
vibrational level |χµg〉 in the electronic ground state and a vibronic level |χνe〉 in the
excited state do not occur. However, in the interaction part HF−CT of the Hamiltonian,
overlap factors of this kind are required because electron and hole transfer couple all
vibronic levels of an excited molecule to the ones of the same molecule in its ionized state.
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4.3. INTERFERENCE BETWEEN FRENKEL EXCITONS AND CT TRANSITIONS

Within the framework of the same effective internal vibration for the charged state and
the excited state of a molecule, the inequality S+ < S− < S discussed earlier in Sec. 2.3.5
allows the definition of positive Huang-Rhys factors for the deformation from an ionized
state towards the optically excited state as

S̃+ = (
√
S −

√

S+)2 (4.26)

S̃− = (
√
S −

√

S−)2 (4.27)

using the vibronic overlap expression in eq. (2.22).
In a periodic system we can transform the CT operators into their wave vector repre-

sentation, compare eq. (4.6):

c†
kαη−γ+,+ =

1√
N

∑

n

e−ik·Rnc†
nαη−;n+1,αγ+

(4.28)

c†
kαη−γ+,− =

1√
N

∑

n

e−ik·Rnc†
nαη−;n−1,αγ+

(4.29)

where the last index of the operators on the left hand side, + or −, addresses the relative
position of the cationic molecule with respect to the anionic site, so that the operator
c†
kαη−γ+,+ and c†

kαη−γ+,− describes Bloch waves of the CT states with opposite direction
of charge transfer. The annhiliation operators can be expressed by the adjoint of these
discrete Fourier transforms.

Building a model Hamiltonian with these operators will result in a decoupling of blocks
with different wave vectors k. The resulting Hamiltonian becomes

Htot =
∑

k

(

HF(k) +HCT(k) +HF−CT(k)
)

where HF(k) is the k-space Frenkel Hamiltonian given before,

HCT(k) =
∑

α

∑

γ+η−

ECT
γ+η−

(c†
kαη−γ+,−ckαη−γ+,− + c†

kαη−γ+,+ckαη−γ+,+) (4.30)

and the mixing between Frenkel and CT excitations is described as

HF−CT(k) =
∑

α

∑

νe

∑

γ+η−

(

c†
kαη−γ+,−bkανe

(t′h +e−ik·at′e)+c†
kαη−γ+,+bkανe

(t′h +eik·at′e)
)

+h.c.

(4.31)
The total Hamiltonian in its matrix form can be written as

Htot(k) =













b†
kAνe

b†
kBνe

c†
kAη−γ+σ c†

kBη−γ+σ

bkAνe
HF

AA(k) HF
BA(k) HF−CT

AA (k) HF−CT
BA (k)

bkBνe
HF

BB(k) HF−CT
AB (k) HF−CT

BB (k)

ckAη−γ+σ h.c.
HCT

AA(k) 0

ckBη−γ+σ HCT
BB(k)












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Figure 4.4: Schematic description of included (black arrows) charge transfer in the ex-
citon model. Middle: neutral molecular excitation; left: CT state obtained from the
neutral excitation after transferring a hole onto the neighboring site; right: CT state after
transferring an electron. Each state can be obtained directly from the electronic ground
state by an optical excitation governed by the large transition dipole µF of a molecular
HOMO-LUMO transition or by the small intermolecular CT transition dipole µCT.

where HCT
αα (k) represents the CT transfer, and HF−CT

αα (k) represents mixing between
Frenkel and CT states between equally oriented molecules in the stack α. Since the
A and B basis molecules are still subject to operations of the space group transforming
them into each other, and to inversion symmetry of each molecule, in analogy with the
Frenkel part we have HF−CT

AA (k) = HF−CT
BB (k) and HF−CT

AB (k) = HF−CT
BA (k). As a conse-

quence of not including the transfer of charge between both basis molecules, the respective
matrix elements are neglected, where HCT

AB(k) = 0 and HF−CT
AB (k) = 0. Fig. 4.4 gives a

schematic overview over the transfer mechanisms in this model. The last index + or -
indicates the direction of the charge transfer.

The matrix element of the charge transfer Hamiltonian can now be written as

HCT
AA±(k) = HCT

BB±(k) = ECT
cγ+η−

, (4.32)

where γ+ and η− represents counters for all the possible CT transitions between the
vibronic levels (0, . . . , γmax

+ ) and (0, . . . , ηmax
− ), so that the number of vibronic basis states

sums up to (γmax
+ + 1) × (ηmax

− + 1).

The matrix elements including mixing of Frenkel and CT states are

HF−CT
AA± (k) = HF−CT

BB± (k) = t′h + e±ikt′e (4.33)
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so that electron and hole transfer interfere with a specific k-dependent phase. Similar to
eq. (4.14) we rotate the Hamiltonian by introducing new operators

c†
kxγ+η−σ =

1√
2
(c†

kAγ+η−σ − c†
kBγ+η−σ) (4.34)

c†
kyγ+η−σ =

1√
2
(c†

kAγ+η−σ + c†
kBγ+η−σ) (4.35)

where σ = +,− represents either of the two directions of charge transfer along the stack,
and the operators c†

kyγ+η−σ describe CT transitions with transition dipole along b//y, and

c†
kxγ+η−σ CT states with transition dipole in the ac plane.

To summarize, the operators introduced are used to construct a rotated Hamiltonian
with the upper left corner containing the y component and the lower right the x compo-
nent:

Htot(k) =










HF
AA(k) +HF

BA(k) HF−CT
AA± (k) 0 0

HF−CT
AA± (k) HCT

AA±(k) 0 0

0 0 HF
AA(k) −HF

AB(k) HF−CT
AA± (k)

0 0 HF−CT
AA± (k) HCT

AA±(k)










(4.36)

The resulting Hamiltonian was diagonalized numerically using the Lapack routines.

4.4 Dipole moment

In each molecule, the transition dipole moment for transitions from the ground state |φg〉
to the excited state |φe〉 is given by the relevant off-diagonal matrix elements of the dipole
operator µ̂,

µge = 〈φg | µ̂ | φe〉, (4.37)

In order to be able to describe mixed Frenkel and CT eigenstates we introduce creator
operators involving the respective part uξνe

, vξγ+η+
, and vξγ+η− of the eigenstate j obtained

from the diagonalization of eq. (4.36):

d†
kjξ =

νmax
e∑

νe=0

ujξνe
b†
kξνe

+
1√
2

( γmax
+ ηmax

−∑

γ+,η−=0

vjξγ+η−c
†
kγ+η−,+ + vjξγ+η−c

†
kγ+η−,−

)

(4.38)

where ujξνe
(vjξγ+η−) are the corresponding Frenkel (CT) eigenvalues of the matrix Htot

and ξ represents either x or y. Now, for an excitation carrying a momentum k, we can
use eq. (4.37) to write the transition dipole moment for the Frenkel and CT states

µkjξ = 〈g | µ̂ | d†
kjξg〉 (4.39)
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For optical excitation corresponding to essentially vanishing photon momentum k, the
transition dipole moment can be expressed as a sum of Frenkel and CT transition dipoles
at k = 0:

µ
0jξ = µF

0jξ+µCT
0jξ =

νmax
e∑

νe=0

u0jξνe
〈g | µ̂ | b†

0ξνe
g〉+

ηmax
− γmax

+∑

η−γ+

v0jξη−γ+
〈g | µ̂ | (

c†
0ξη−γ+,+ + c†

0ξη−γ+,−√
2

)g〉

(4.40)
We divide this into a Frenkel and a CT part. When neglecting intermolecular exchange
effects, µF

0jξ can be written as

µF
0jξ =

νmax
e∑

νe=0

1√
N

∑

n
︸ ︷︷ ︸

=
√

N

ujξνe
〈χeνe

n | χg0g

n 〉
︸ ︷︷ ︸

=S0gνe

〈
∏

n

χg0g

n | χg0g

n 〉
︸ ︷︷ ︸

=1

〈φe
n

∏

m6=n

φg
m | µ̂ |

∏

n′

φg
n′〉

︸ ︷︷ ︸

=µME

=

=
√
NµME

νmax
e∑

νe=0

u0jξνe
S0gνe

(4.41)

where µME is the transition dipole moment of an intra-molecular excitation. As discussed
in Sec. 4.3, in the excitonic eigenstates the molecular transition dipoles µA and µB are
superimposed, defining two orthogonal Cartesian direction x and y:

µF
0jx =

√

N

2
(µA − µB)

νmax
e∑

νe=0

u0jxνe
S0gνe

µF
0jy =

√

N

2
(µA + µB)

νmax
e∑

νe=0

u0jyνe
S0gνe

Neglecting exchange of electrons and holes between CT dimers and the other molecules in
their ground states we get, using the same reasoning as for the Frenkel dipole, the charge
transfer dipole moment

µCT
0jξ =

=
∑

γ+η−

v0jξγ+η−

1√
N

∑

n

1√
2

(

〈φ+
nχ

+γ
n φ−

n+1χ
−η
n+1 |

∏

m6=n

m6=n+1

φg
mχ

g0g

m | µ̂ |
∑

n′

φg
n′χ

g0g

n′ 〉 +

〈φ+
nχ

+γ
n φ−

n−1χ
−η
n−1 |

∏

m6=n

m6=n−1

φg
mχ

g0g

n | µ̂ |
∏

n′

φg
n′χ

g0g

n′ 〉
)

=

=
∑

γ+η−

v0jξγ+η−

√
N
√

2S+
γ+0g

S−
η−0g

µMCT , (4.42)
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where µMCT is the transition dipole moment of a charge transfer towards the stack neigh-
bor. The total expression of all the possible transition dipole moments can be written
as

µ0jξ =
√
N

( νmax
e∑

νe=0

µMEu0jξνe
S0gνe

+
∑

γ+η−

√
2S+

γ+0g
S−

η−0g
µMCTv0jξγ+η−

)

. (4.43)

Since the total dipolar coupling strength is unaffected by the unitary transformations to
the excitonic eigenstates, we can use the relation

∑

jξ

(

|µF
0jξ|2 + |µCT

0jξ|2
)

= N
(

(µF
A)2 + (µF

B)2 + (µCT
A )2 + (µCT

B )2
)

.

as an additional test to confirm the validity of the sums involved in the definition of the
transition dipoles νξ of the excitonic states. The contribution of each eigenstate |d†

kjξg〉
to the optical spectrum is governed by the oscillator strength depending on the square of
the transition dipole moment

f0jξ =
2me

e2h̄2E0jξ|µ0jξ|2. (4.44)

As discussed in Sec. 3.3.4, the transition dipole moment of the CT state is typically less
than one seventh of the molecular transition dipole, which gives a contribution below 2%
to the oscillator strength. However, if the Frenkel and CT basis states are strongly mixed,
the resulting mixed eigenstates can have a significant Frenkel character. Therefore, even
excitonic eigenstates containing mainly CT transitions can acquire a substantial oscillator
strength arising from the admixture of the large molecular transition dipole involved in
the part coming from Frenkel excitons.

4.5 Sum rules

The vibronic progression observed for molecular crystals is subject to two types of sum
rules, one concerning the transition dipoles and one regarding moments of the line shape
as a function of energy.

4.5.1 Sum rules for transition dipoles

In a model where only Frenkel excitons contribute to the absorption, the overall strength
of the HOMO-LUMO transition can be expressed as

∫

dEℑ[ǫxx(E)] =
2πZµ2

x

ǫ0V0
(4.45)

where the intergration shall extend over an interval of about 1.8−3.2 eV, excluding higher
transitions, and Z is the number of molecules in the unit cell, and V0 the volume, and µ
the transition dipole involved in the optical excitation. The values of the transition dipole
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for each molecule can be found in Table 3.10 and the calculated area
∫
dEtr[ℑ(ǫξξ)] in

Table 4.1.
For DIP the experimental results gives a value of 4.2 eV [11] and a transition dipole of

µ = 6.6 D while our calculation gives a value of 7.2 eV and a transition dipole of µ = 8.1
D. From this we draw the conclusion that the calculated values are the upper bounds,
whereas the experimentally determined transition dipole can work as a lower bound since
the roughness of the film reduces the filling factor below 100%. Still, the experimental
value is expected to be closer to the real value since measurements with atomic force
microscopy (AFM) and X-ray data shows that the roughness defines by the root-mean-
square error of the mean thickness is rms≈4.3 nm, which is still small compared to the
mean film thickness of 33 nm.

compound Fit: dielectric response Fit: dipole TD-DFT
∫
dEℑ [ǫxx(E)]

∫
dEℑ [ǫyy(E)] µx µy µx µy

[eV] [eV] [D] [D] [D] [D]
α-PTCDA ǫxx [141] 2.905 - 4.711 - 4.653 -
α-PTCDA ǫyy [141] - 3.241 - 5.005 - 5.135
PTCDA [110] 2.055 2.473 3.962 4.372 4.653 5.135
Me-PTCDI [127] 0.568 4.510 2.204 6.321 2.441 7.002
Me-PTCDI [14] 0.732 5.811 1.968 5.645 2.441 7.002
Me-PTCDI [142] 0.419 3.320 1.891 5.424 2.441 7.002
PB31 [14] 4.861 2.590 8.386 6.120 6.694 5.082
PTCDI [143] 5.965 0.177 6.964 1.162 7.553 1.268
PR149 [14] 2.183 2.084 5.259 5.107 4.850 4.710
DIP [11] 7.200 0.015 8.099 0.375 8.194 0.380

Table 4.1: Values of the fitted relative strength of the dielectric response (column two and
three), and fitted (column four and five) and calculated dipole moment using TD-DFT
(column six and seven).

4.5.2 Sum rules for exciton transfer

In the following, the transfer matrix elements TAA(k = 0) ± TAB(k = 0) occurring in the
Frenkel part of the Hamiltonian will be abbreviated as T . According to Briggs et al.
[133, 134, 132] a sum rule gives that the mean energy of the Frenkel spectra is

〈EF〉 = EF
00 + Sh̄ω + T (4.46)

where 〈EF〉 can be expressed as the center of mass of the imaginary part of the dielectric
function in the crystalline phase. From similar reasoning follows that the pure CT states
have the center of mass of their optical transition line shape mass at a position given by

〈ECT〉 = ECT
00 + (S+ + S−)h̄ω. (4.47)
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In the F-CT model the average energy of the HOMO-LUMO transition will be at

〈E〉 =
〈EF〉 + 〈ECT〉 · p2

rel

1 + µ2
rel

(4.48)

where the µrel = |µCT |/|µF | is the weighting of the CT transition dipole relative to the
molecular transition dipole. As discussed below, for the perylene pigments analyzed in
the present work, the difference |ECT

00 −EF
00| never exceeds 0.3 eV, and µ2

rel = |µCT |2/|µF |2
remains below 0.02, so that the CT transitions do not affect the average (4.48) by more
than 0.006 eV. As this energy scale is irrelevant with respect to uncertainties arising from
the analysis of measured data, in a further sum rule for the second moment, the influence
of the small CT transition dipole will be ignored.

In a pure Frenkel model, it was shown previously that the second moment of the
optical response does not depend on exciton transfer [134]

〈(∆E)2〉 = S(h̄ω)2. (4.49)

In the limit of vanishing transition dipole of the CT states, our mixed Frenkel-CT model
gives a simple equation for the change in the second moment,

〈(∆E)2〉 = S(h̄ω)2 + 2(te + th)
2, (4.50)

where the contribution arising from electron and hole transfer reproduces the second
moment obtained in a single particle picture.

4.6 Optical properties

To obtain the frequency-dependent elements of the dielectric tensor it is necessary to
include the broadening of the vibronic subbands in a physically meaningful way. From the
Lorentzian broadening of resonant Raman spectra and the decay of vibrational oscillations
observed in pump-probe experiments, it can be estimated that the lifetime of optical
excitations is of the order of a few picoseconds, corresponding to a FWHM of about
1 meV. Nevertheless, the strong coupling of the transitions to the elongation of low-
frequency molecular vibrations and external phonons results in a Gaussian broadening
with a FWHM of the order of 100 meV. Therefore, the imaginary part of each element of
the dielectric tensor has to account for normalized Gaussian lineshapes of each transition

ℑ[ǫxx(ω)] =
2

ǫ0V h̄

∑

j

µ2
0jxf(ω, ω0jx, σjx) (4.51)

and similar for ǫyy(ω) and where the normalized Gaussian can be written as

f(ω, ω0jx, σjx) =
1

√
2πσjx

exp
(−(ω − ω0jx)

2

2σ2
jx

)

. (4.52)
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Here ω0jx = E0jx/h̄ are the transition frequencies obtained from the diagonalization of
the model Hamiltonian, the prefactor 2 represent spin degeneracy, and V is the volume
of the crystal. To obtain the real part we apply the Kramers-Kronig transform

Re(ω) =
2

π
P

∫ ∞

0

ω′Im[ω′]

ω2 − ω′2 dω
′ (4.53)

where P denotes the Cauchy principal value. In the real part the frequency-dependent
background from higher lying transitions χb(ω) has to be accounted for as

χb(ω) = χ(0)
Ω2

g

Ω2
g − ω2

(4.54)

where we assume a single transition frequency Ωg and a contribution χ(0) to the static
susceptibility. From this follows the real part of the dielectric tensor element ǫxx

ℜ[ǫxx(ω)] = 1 + χb(ω) +
2

ǫ0V h̄

∑

j

µ2
0jx

√

2

π3σj
P

∫ ∞

0

ω′e−(ω′±ω0j)
2/2σ2

j

ω2 − ω′2 dω′ (4.55)

From the dielectric function other optical properties can be derived, such as the re-
fractive index through the relations n = ℜ(n) + iℑ(n) =

√
ǫ and ℑ(ǫ) = 2ℜ(n)ℑ(n).

Furthermore, the absorption coefficient can be deduced from the extinction coefficient
ℑ(n) using the relation

α(ω) = 2
ω

c
ℑ(n) (4.56)

where the factor 2 comes from the fact that we square the wave amplitude to get the light
intensity and its decay.

Optical density (OD) and reflectivity R provide complementary information on the real
and imaginary parts of the refractive index. The optical density depends logarithmically
on the transmission T

OD = −log10(T ) (4.57)

with the transmission given by

T = e−αd(1 − R)2 (4.58)

where d is the film the thickness, R the reflectivity and α the absorption given in eq.
(4.56). When the organic film is grown on a substrate like glass, this formula can be
generalized to different reflectivities of the front and rear surfaces of the film, but such
differences will be ignored in the following. From the exponential in the definition of T ,
one expects the optical density to be proportional to the extinction coefficient, but the
correction factor (1 − R)2 generates energy-dependent deviations. Moreover, published
values for the optical density tend to suppress an energy dependent slope in order to have
a closer analogy to the extinction coefficient.
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4.7 Data analysis

For the reference case of Me-PTCDI films studied at room temperature, digitized pub-
lished data for the optical density and the reflectivity are presented in Fig. 4.5 [14].

In the fitting procedure a Kramers-Kronig consistent model function was defined for
the complex refractive index n, and then all parameters were optimized. The extinction
coefficient ℑ(n) was modelled with a sum of Gaussians. In order to perform an analytical
Kramers-Kronig transform, each Gaussian was replaced by four superimposed Lorentzians
with weights and relative widths kept at the same values with respect to a normalized
Gaussian. For the real part of the refractive index a background coming from a sharp
transition at a much higher values is included. Since this is similar to the background
contribution of Re(ǫ), this background function does not generate a contribution ℑ(n) in
the energetic range of interest.
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Figure 4.5: Optical density (OD), reflectivity (R), and extinction coefficient ℑ(n) of
Me-PTCDI, at room temperature. Black: observed optical density of thin film with a
thickness of about 100 nm and reflectivity of a single crystal with electric field polarized
along the lattice vector b [14], red: fit to optical density, and assumed linear baseline
underlying the published data, green: fit to reflectivity, blue: extinction coefficient ℑ(n).
The fits are relying on a Kramers-Kronig consistent model for the refractive index.

We found clear evidence that the published optical density was corrected for a frequency-
dependent background, compare Fig. 4.5, and we assumed that this background was
described by a linear dependence on energy. The area and broadening of the different
subbands can easily be obtained from the optical density, but without additional infor-
mation on the reflectivity, it would not be possible to determine reliable values for the
background of ℜ(n). Therefore, we alternated between fits of the Gaussian subbands
contributing to ℑ(n) and an adjustment of the background of ℜ(n). As a result of this
fitting procedure, we have determined a Kramers-Kronig consistent model for the complex
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refractive index, and as visualized in Fig. 4.5, optical density and reflectivity calculated
from this model give excellent agreement with the observed data. The optical density was
measured on a polycrystalline film with random azimuthal orientation of the crystallites,
so that about 90% of the absorption arises from the large diagonal component ǫyy of the
dielectric tensor, and 10% from the small component ǫxx, compare Table 3.1. In the fit, we
have assumed that both components have the same energy dependence. The modulation
of the calculated reflectivity curve depends on the film thickness assumed in the fit of the
optical density, and we found the best agreement at the reflectivity extrema occuring at
2.12 and 3.10 eV for a fixed film thickness of 86 nm in the fit of the optical density, in
reasonable agreement with the experimental estimate of about 100 nm. Our best value for
the film thickness was based on visual inspection of the agreement between calculated and
measured reflectivity curve, as opposed to a fit of a free thickness parameter. Therefore,
we give a conservative estimate of d = 86 ± 5 nm for the film thickness underlying our
analysis, excluding uncertainties of the absolute scale of the measured data which were
not reported. Fig. 4.5 demonstrates that the reflectivity corrections in the definition to
the optical density are responsible for small deviations between the shape of the observed
optical density and the underlying extinction coefficient ℑ(n).
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Chapter 5

Application to perylene compounds

In this chapter we will apply the exciton model to observed optical spectra of several
molecular crystals. The first part discusses sample properties and measurements of op-
tical spectra, including their temperature dependence. The following sections present
a comparsion between calculated and observed line shapes of the dielectric function in
PTCDA, DDTP, Me-PTCDI, PB31, PTCDI, PR149 and DIP, with two different degrees
of sophistication of the exciton model.

5.1 Crystal preparation and optical measurements

The PTCDA single crystal measured by Alonso et al. was grown with temperature step
sublimation under vacuum and the specific (102) crystal face used for optical measure-
ments was obtained by cleavage. These spectra were obtained at room temperature using
a spectral ellipsometer with rotating polarizer. The data set analysed in this thesis has
been obtained from a reinterpretation of existing ellipsometry data [141] with a refined
model for the propagation of light in a monoclinic medium because the exciton model dis-
cussed in this thesis has demonstrated that the dielectric tensor published earlier cannot
be reproduced with model calculations.

The Me-PTCDI and PR149 single crystals were grown from source material purified
by vacuum sublimation using a two-zone furnace. PR149 was sublimed at 740 K and Me-
PTCDI at 620 K. The thin films were prepared from evaporation and crystallization
onto plain glass slides using conventional vacuum equipment. For the measurements, a
spectrophotometer was used to collect the UV-Vis transmission and reflection spectra
over a winde range of temperatures [14].

The PB31 single crystal was grown from the vapor phase using argon as the carrier
gas in the same sublimation equipment [109] and the measurements were carried out as
for Me-PTCDI and PR149.

PTCDI was purified by a train sublimation method and the crystals were produced
using a multisource-type molecular beam deposition system and the optical spectra were
measured using a spectrophotometer.
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DIP films were grown by organic molecular beam deposition (OMBD) on oxidized
silicon wafers. To collect the data, the dielectric response including its anisotropy was
obtained with variable-angle spectroscopic ellipsometry (VASE) [11].

The DDTP powder was purified twice by vacuum sublimation. The single crystals
were then grown from the vapor phase sublimed at about 635 K using argon for 48
hours. The evaporated sample was then prepared under high vacuum using conventional
evaporation equipment. A subsequent vapor treatment was performed using acetone
vapor for 1 hour. The absorption spectra were performed using a UV/NIT Lambda 9
spectrophotometer [144].

5.1.1 Temperature dependence of optical observables

Previous studies of the temperature dependence of the lattice vectors have revealed that
the stacking vector of Me-PTCDI and PR149 shrinks by at least 1% when going from
room temperature to low temperature [14]. At room temperature, the anisotropic thermal
expansion coefficient is of the order of 1×10−4 K−1, and for PTCDA, the expansion
coefficient of the stacking vector even exceeds this value [14, 138]. Assuming that the
temperature dependence of the stacking vector in PTCDA remains particularly large
when cooling the material, it can be estimated that its reduction should be around 1.5%
when going to very low temperature. The calculated dependence of the CT transition
energy on the stacking vector of 0.5 eVÅ−1 [118] gives an estimate of about 0.02 to 0.03 eV
for the resulting red shift of the CT transition. Energetic shifts in this range are consistent
with the temperature dependence of photoluminescence from CT states [139]. Concerning
absorption spectra of PTCDA, a line shape analysis of low-temperature spectra reveal a
red shift of the lowest Frenkel subband by about 0.02 eV with respect to ellipsometry data
obtained at room temperature [127, 140]. For Me-PTCDI, the observed optical density at
T = 20 K contains sharper structures, consistent with a red shift of the neutral molecular
excitation by about 0.02 eV with respect to room temperature, and a reduced broadening.
For simplicity, we assume that neutral molecular excitations and CT transitions shift in the
same way as a function of temperature, or by −0.02 eV when reducing the temperature to
T = 20 K. In the following, we shall analyse room temperature optical data for selected
materials, where the sharper observed structures at low temperature allow for a more
precise determination of the model parameters.

5.2 Modelling of optical spectra with Frenkel exci-

tons

Before coming to the F-CT model we will first discuss the parameters for the pure Frenkel
model presented in Sec. 4.2, determined from a comparison of eq. (4.46) with the average
transition energy. The lowest dispersion branch at the Γ point of the Brillouin zone,
EF

00(0), corresponds to the lowest transition contributing to the dielectric function. The
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difference between the molecular parameter EF
00 and the observed transition at EF

00(0) can
be determined by calculating the optical spectra of the pure Frenkel model.

We compare the dielectric tensor element ℑ(ǫyy) of Me-PTCDI with the Frenkel exciton
model with parameters resulting in the same average transition energy 〈E〉 together with
the observed value for the lowest subband which is assigned to EF

00(0) in Fig. 5.1. This
procedure allows us to determine an approximate exciton transfer T = TAA(0) + TAB(0)
governing this element of the dielectric tensor. As the only evidence for the shape of the
perpendicular diagonal element ǫxx is restricted to a reflectivity curve with similar shape
as the one included in Fig. 4.5, but with reduced modulation, we assume that both tensor
elements ǫxx and ǫyy coincide except for the size related to the respective dipolar coupling
strength. This corresponds to a vanishing Davydov splitting since the exciton transfer
between the differently aligned basis molecules TAB(0) is assumed to vanish.
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Figure 5.1: Imaginary part of the dielectric tensor element ǫyy derived from the measured
optical density at T = 20K [14] (black solid), and calculation based on a pure Frenkel
exciton model (green dashed) with parameters chosen according to the sum rule in eq.
(4.46), compare Table 5.1.

By reproducing the observed value of 〈E〉 and the position of the lowest subband
EF

00(0) one obtains the parameter set summarized in Table 5.1. From Fig. 5.1 it is
obvious that this model is not flexible enough for obtaining a quantitative agreement
with the observed intensities of the various subbands. However, this approach provides
approximate starting values for EF

00 and the matrix element governing the transfer of
neutral excitations. Moreover, for PTCDA, the anisotropy of the the optical observables
measured by spectroscopic ellipsometry allows to determine reasonable parameters both
for TAA(0) and TAB(0) [140, 141].
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T 〈E〉 EF
00 Sh̄ω TAA(0) TAB(0) EF

00(0)
K eV eV eV eV eV

PTCDA ǫxx [141] 300 2.40 2.20 0.15 0.095 0.045 2.22
PTCDA ǫyy [141] 300 2.49 2.20 0.15 0.095 0.045 2.25
PTCDA [110] 300 2.49 2.16 0.15 0.18 0.11 2.23
DDTP [144] 12 2.12 1.76 0.15 0.25 – 1.82
Me-PTCDI [14] 20 2.43 2.05 0.15 0.23 – 2.10
Me-PTCDI [14] 300 2.46 2.08 0.15 0.23 – 2.13
PB31 [14] 12 2.36 1.96 0.15 0.25 – 2.01
PTCDI [143] 300 2.42 2.06 0.14 0.22 – 2.14
PR149 [14] 20 2.51 2.14 0.15 0.22 – 2.19
DIP [11] 300 2.48 2.22 0.15 0.11 – 2.25

Table 5.1: Model parameters for a pure Frenkel exciton model. The effective mode and
its Huang-Rhys factor S are taken from Table 5.2, and the exciton transfer parameters
are determined according to the sum rule in eq. (4.46) and the lowest observed subband,
assigned to EF

00(0) at Γ. The average observed excitation energy 〈E〉 of the HOMO-
LUMO transition is obtained from an analysis of measured spectra, excluding the higher
transition around 3.3 eV. The parameter TAB(0) responsible for Davydov splitting can
only be addressed for PTCDA where a pronounced anisotropy of the dielectric tensor was
observed [140, 141].

5.3 Modelling of optical spectra with interference of

Frenkel excitons and CT transitions

5.3.1 Model parameters

In this refined exciton model containing both Frenkel excitons and CT states, the mi-
croscopic parameters can be divided into several groups. The first set of parameters
addresses molecular deformations in excited or charged molecular states. As discussed
in Sec. 2.3.4, these deformations can be calculated with DFT, and their parametrization
in terms of an effective internal vibration is a well controlled procedure. Therefore, the
respective parameters in Table 2.5 will be applied without modification. The second set
of parameters consists of the electron transfer te and the hole transfer th. As discussed in
Sec. 3.3.1 in more detail, Hartree-Fock and the hybrid functional B3LYP give somewhat
different results, and in the present section, it will be shown that the B3LYP/TZ values in
Table 3.6 are the better choice. However, from visual inspection of the agreement between
model line shapes and measured data, and from a comparison with the analytical sum
rule eq. (4.50) for the second moment, small modifications of the B3LYP/TZ starting val-
ues will be required in selected cases. The third group of parameters contains the lowest
molecular transition EF

00 and the transfer parameters TAA(0) and TAB(0) governing the
Frenkel excitons. As discussed in Sec. 5.2, the model containing only Frenkel excitons

98



CHAPTER 5. APPLICATION TO PERYLENE COMPOUNDS

together with the sum rule eq. (4.46) gives easy access to reasonable starting values, but
the resulting line shape may be in rather poor agreement with the observations. There-
fore, in cases of strong mixing of Frenkel and CT states with large transfer parameters
of electron and hole, this simplistic model may give misleading parameters, and in the
full exciton model, some modification will be unavoidable. Nevertheless, the sum rule eq.
(4.46) will remain particularly useful. As will be demonstrated below in some detail, the
difference ∆00 = ECT

00 − EF
00 between the lowest CT subband and the lowest molecular

transition has a tremendous influence on the computed line shapes. At the present time,
microscopic calculations of this difference are not yet very precise so that this difference
∆00 will be considered as a completely free fitting parameter.

On site energies: EF
00 and ECT

00

The transition energies of neutral excitations (EF
00) and CT states (ECT

00 ) can be estimated
from quantum chemical analysis but the resulting values are not precise enough for our
purposes. However, the ECT

00 is expected to depend linearly on the intermolecular distance
[145]. This argument builds on a parallel plate condensator with opposite charges on both
plates. For PTCDA, the energies EF

00 and ECT
00 are consistent with the range deduced in

previous model calculations [129, 122, 118]. For PTCDA and PTCDI, sign and size of
the transfer parameters te and th seem to be arranged in a way that they counterfeit and
weaken the influence of the CT state on the optical properties, once for ECT

00 − EF
00 < 0

(PTCDA), and once for ECT
00 −EF

00 > 0 (PTCDI). We found that for all molecules excluding
PTCDA, the dependence on the stacking distance d is approximately ∂(ECT −EF)/∂d ≈
0.06 eV/Å, see Fig. 5.2. Possibly small deviations from linearity arise from different
values for the effective dielectric function along the stacking vector. For PTCDA, the
presence of the anhydride groups induces stronger hydrogen bridges between adjacent
molecules and larger quadropole moments of each molecule. It remains unclear how the
increased intermolecular interactions determine the deviation of the CT energy from the
trend observed in the other perylene compounds.

Transfer of neutral excitations: TAA and TAB

The exciton transfer integrals can be estimated by the interaction between the transition
dipoles of µα and µβ for sufficiently large distances between the corresponding molecules,
see Sec. 3.4 for details. These parameters will be treated as quasi-free fitting parameters
since they are neither calculated nor deduced from experiments because the static ǫ-tensor
is unknown, except for PTCDA. As experimental information on the anisotropy of the
optical properties is not available for all other compounds, TAB(0) = 0 will be assumed
throughout. However, the exciton transfer TAA(0) is restricted by sum rules discussed
in Sec. 4.5, so that an approximate value can be obtained by studying the experimental
spectra.

In cases where the long axes of the two basis molecules are close to parallel, one element
of the dielectric tensor is dominating. In these cases, an effective transfer parameter
T = TAA + TAB is sufficient. In the case of PB31, the angle between the long axes of the
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Figure 5.2: Dependence of the difference between the lowest vibronic subbands of the CT
transition and the neutral molecular excitation ∆00 = ECT

00 − EF
00 on the stacking vector

of the perylene compounds, together with a linear slope fitted through the values of all
compounds except for PTCDA and DDTP. Their exact values can be found in Tables 3.4
and 5.5.

molecules is quite large, compare Table 3.4, so that a non-vanishing value for the exciton
transfer TAB might result in a pronounced anisotropy of the line shape of the refractive
index.

The lowest transition contributing to the dielectric function corresponds to the lowest
dispersion branch at the Γ point of the Brillouin zone, EF

00(k = 0), not to the molecular
parameter EF

00 occurring in the sum rule. Its position can be estimated by

E00(Γ) ≈ EF
00 + e−ST +O(T 2) (5.1)

and a more precise value can easily be obtained from a numerical diagonalization of the
Frenkel Hamiltonian.

Ab initio parameters

The calculated parameters are summarized in Tables 3.10, 5.2 and 5.3. The dipole mo-
ments are taken from Table 3.11 and scaled in order to reproduce the area of the observed
line shapes, compare Table 3.10.
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compound mode cation anion excited
h̄ωeff S+ S− S
eV 1 1 1

PTCDA 0.171 0.348 0.649 0.880
DDTP 0.165 0.379 0.462 0.722
Me-PTCDI 0.170 0.336 0.625 0.867
PB31 0.175 0.166 0.635 0.873
PTCDI 0.170 0.276 0.552 0.816
PR149 0.170 0.191 0.730 0.882
DIP 0.165 0.311 0.560 0.929

Table 5.2: Effective internal vibration for the perylene compounds, with Huang-Rhys
factors S− and S+ of the ionized states obtained with DFT, and the Huang-Rhys factor
in the relaxed excited geometry with constrained DFT, all at the B3LYP/TZ level and
with a frequency scaling of 0.973.

compound te th
eV eV

PTCDA [141] 0.024 -0.034
PTCDA [110] 0.024 -0.034
DDTP [144] 0.044 -0.080
Me-PTCDI [127] -0.080 -0.035
Me-PTCDI [14] -0.090 -0.020
Me-PTCDI [142] -0.090 -0.030
PB31 [14] 0.053 0.144
PTCDI [143] 0.019 0.076
PR149 [14] 0.015 0.088
DIP [11] -0.033 -0.056

Table 5.3: Electron transfer and hole transfer used in the Frenkel-CT exciton model.

5.3.2 Optical spectra of perylene compounds

Since the pure Frenkel exciton model was only able to reproduce the energy of the lowest
vibronic subband and the average transition energy 〈E〉, but failed to reproduce the
observed dielectric function displayed in Fig. 5.1, the second moment of the calculated
line shape remains much too narrow. This indicates that the pure Frenkel model is
ignoring a fundamental interaction mechanism leading to an additional spreading of the
calculated dielectric function over a larger energetic range. This section will be used to
demonstrate that the Frenkel-CT interference via electron and hole transfer can account
quantitatively for these features.
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compound µF
x;y µF

x µF
y µCT

x;y µCT
x µCT

y

D D D D D D
PTCDA ǫxx [141] 7.016 4.711 5.199 0.573 0.548 -0.169
PTCDA ǫyy [141] 6.754 4.535 5.005 0.552 0.527 -0.163
PTCDA [110] 6.481 4.352 4.803 0.530 0.506 -0.156
Me-PTCDI [14] 5.979 1.968 5.646 0.392 0.381 0.093
Me-PTCDI [127] 7.322 2.410 6.914 0.480 0.466 0.114
Me-PTCDI [142] 5.864 1.930 5.537 0.385 0.374 0.091
PB31 [14] 10.381 8.386 6.120 0.824 0.788 0.242
PTCDI [143] 7.061 6.964 1.169 0.632 0.561 -0.292
PR149 [14] 7.332 7.280 0.877 0.260 0.100 0.240
DIP [11] 8.099 8.091 0.375 0.018 -0.015 0.010

Table 5.4: Scaled dipole moments used in the fits, assuming that µF is oriented exactly
along the long axis of the perylene core, and an orientation of µCT as obtained from a
calculation of a stacked dimer.

In the Frenkel-CT model, for EF
00 < ECT

00 , the interaction between both types of exci-
tations pushes the lowest vibronic subband down in energy, so that the lowest molecular
transition EF

00 is required to be higher in energy than in the pure Frenkel model parameters
given in Table 5.1. The sum rule (4.46) implies that the exciton transfer TAA(0) has to be
reduced in order to keep the average transition energy 〈E〉 consistent with observations.
The resulting model parameters used are summarized in Table 5.5.

T EF
00 ECT

00 ∆00 TAA(0) TAB(0) µF

Compund (K) (eV) (eV) (eV) (eV) (eV) (D)
PTCDA [141] 300 2.17 1.95 -0.22 0.14 0.05 7.02
PTCDA [110] 300 2.17 1.95 -0.22 0.14 0.05 6.75
DDTP [144] 12 1.86 1.84 -0.02 0.145 0.00 -
Me-PTCDI [14] 20 2.18 2.24 0.06 0.08 0.00 5.98
Me-PTCDI [14] 300 2.20 2.26 0.06 0.08 0.00 5.98
Me-PTCDI [127] 300 2.18 2.24 0.06 0.09 0.00 7.32
Me-PTCDI [142] 300 2.31 2.25 0.06 0.05 0.00 5.86
PB31 [14] 12 2.195 2.325 0.13 0.01 0.00 10.38
PB31 [14] 293 2.195 2.325 0.13 0.01 0.00 10.02
PTCDI [143] 300 2.18 2.31 0.13 0.06 0.00 7.06
PR149 [14] 20 2.155 2.365 0.21 0.12 0.00 7.33
DIP [11] 300 2.255 2.535 0.28 0.095 0.00 8.10

Table 5.5: Parameters of the Frenkel-CT model, with ∆00 = ECT
00 −EF

00.
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PTCDA

Even though previous studies have shown that the mixing between Frenkel and CT states
is rather small for PTCDA [122], we found evidence that the CT interference still has a
significant influence on the optical line shape. An interesting feature of PTCDA is the
anisotropy of the material, and by using data collected by Alonso et al. we can include this
feature in our model fit. The calculation will also be compared to line shapes measured
by Djurisic et al. [110] in order to access the quality of our model parameters for different
sets of measured data.

For PTCDA, in contrast to DIP, the large angle between the transition dipoles of the
two basis molecules results in an oscillator strength of similar size in both components
of the dielectric tensor. Therefore, it is particularly interesting to analyze the impact of
the relatively small mixing between Frenkel and CT states onto the optical response of
this model compound. By applying second order perturbation theory to the off-diagonal
matrix elements proportional to te and th according to eq. (4.31) we obtain a shift of the
Frenkel exciton subband EF

00(0) of less than 0.02 eV, so that the parameters resulting from
a pure Frenkel model given in Table 5.1 should remain reasonable up to small changes
within a similar energetic range.
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Figure 5.3: Comparison of the measured line shape of the elements of the dielectric tensor,
obtained from a (102) face of a single crystal of α-PTCDA [141], and calculated (dashed)
dielectric function for light polarization orthogonal (left) and parallel (right) to the b-axis
of the crystal unit cell.

In Alonso’s measurement for polarization along the b-axis, or parallel to the y axis
of our Cartesian reference system, there are two prominent peaks, the first at ∼2.24 eV
corresponding to a single vibronic subband, whereas the broad structure around 2.55
eV consists of several superimposed subbands, see Fig. 5.3. Both for ǫxx and ǫyy, the
calculation reproduces the key features appearing in the experimental spectra, including
in each case position and relative height of the lowest vibronic subband and the main
band around 2.5 eV. The transition dipoles from Table 5.5 used in the calculated line
shapes are close to the TD-DFT value of 6.93 D. Small deviations between the chosen
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transition dipoles can be related to an energy-dependent slope contained in the observed
data which may arise from unknown contributions such as non-specular diffuse reflection,
so that the data analysis of spectroscopic ellipsometry gives a small positive value ℑ(ǫ)
in specific energetic regions where no Frenkel or CT transitions are expected, e.g. around
3 eV.

In the full F-CT model, the lowest transitions occur at 1.948 eV, slightly shifted
down with respect to ECT

00 = 1.95 eV via the F-CT mixing. The size of these structures
depends sensitively on the interference between the small values for the CT transition
dipole obtained from TD-DFT calculations of a stacked dimer and the large transition
dipole of the neutral molecular excitations. Even though these calculated absorption
features are hardly visible in Fig. 5.3, recent PL excitation studies have demonstrated that
excitation in this energetic region can selectively produce PL from CT states, confirming
that our value of ECT

00 is realistic [139]. Moreover, at room temperature, in the region
of the first excited vibronic level of the CT transition at ECT

01 = ECT
00 + h̄ω = 2.12 eV,

PL excitation spectra show a resonance allowing selective excitation of PL from excimers
[12], a further indication that weakly absorbing CT transitions play a key role for the
excitation of PL from self-trapped CT excitons.

Due to the Frenkel transfer between differently aligned molecules the spectra for the
two orthonogal polarizations are quite different. The center of mass of the calculated
imaginary part of the dielectric tensor element ℑ(ǫxx) at 〈E〉x = 2.40 eV, is lower than
for the average over ℑ(ǫyy) at 〈E〉y = 2.49 eV, which leads to a pronounced anisotropy,
with TAB(0) = (〈E〉y − 〈E〉x)/2 = 0.045 eV.

The small influence of CT states can also be observed by inspecting the first peak at
2.20 eV in the left panel and at 2.24 eV in the right panel of Fig. 5.3. These peaks contain
little CT weight, due to the small Frenkel-CT mixing via the transfer matrix elements
te = 0.026 eV and th = −0.034 eV. Furthermore, for PTCDA the relative size of the
calculated CT transition dipole is very small, µCT/µF = 0.06, reducing the influence of
the CT states on the optical response.

For PTCDA the CT energy of ECT
00 = 1.95 eV is well below the EF

00 = 2.17 eV, because
the stacking distance in the crystal is particularly small. This large difference between the
on-site energies can also explain why the CT state is not very prominent since it cannot
efficiently borrow oscillator strength from the much stronger Frenkel transitions. As shown
in Fig. 5.4 using the parameters in Table 5.1 for the pure Frenkel excitons according to
the sum rules discussed in Sec. 4.5, the agreement with the observed dielectric tensor
deteriorates significantly. Therefore, even though in PTCDA the mixing between Frenkel
and CT states is particularly small, the adjustment of ECT

00 with respect to EF
00 in the

full F-CT model still improves the calculated shapes of the two elements of the dielectric
tensor. The sensitivity of the calculated lineshape on the energetic difference ECT

00 − EF
00

is visualized in Fig. 5.5, where EF
00 = 2.17 eV was kept fixed, but ECT

00 was modified by
±0.07 eV. From the significant deviation between the calculated line shapes for ℑ(ǫxx)
and the observed data we conclude that our exciton model allows to determine the CT
energy within an uncertainty range of ECT

00 = 1.95 ± 0.07 eV, or less than half of the
effective internal vibration.
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Figure 5.4: Comparison of revised values of the dielectric functions ǫxx and ǫyy [141]
comparing the line shapes computed with the pure Frenkel (green dash-dotted) and the
F-CT (red dashed) model, with parameters according to Tables 5.1 and 5.5, respectively.
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Figure 5.5: Left: as Fig. 5.3, but calculated with ECT
00 =1.88 eV (red dashed) and

ECT
00 =2.02 eV (blue dash-dotted). Right: higher resolution, revealing substantial devia-

tions for the lowest subbands.

In data obtained by Djurisić et al. [110] the higher transitions are lying around 3.3
eV and the dipolar coupling strength of the HOMO-LUMO transition is about 2/3 as
strong as for the ellipsometry study of single crystals [141]. Except for the modified size
of the dipole moments these data can be qualitatively reproduced with the same set of
parameters. Residual deviations are partly related to the fact that the experimental data
are not entirely Kramers-Kronig consistent, as opposed to the elements of the dielectric
tensor deduced from spectroscopic ellipsometry, compare Fig. 5.3.

In summary, for PTCDA, the availability of the anisotropic dielectric tensor allows to
deduce the parameters for transfer of neutral excitations TAA(0) and TAB(0) in a model
relying exclusively on Frenkel excitons. The refined model including the mixing between
Frenkel excitons and CT states can determine the energetic position of the CT transition
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Figure 5.6: Refractive index of PTCDA thin films [110], and calculated values based on
the average of the diagonal elements of the dielectric tensor, (ǫxx + ǫyy)/2. The essential
model parameters correspond to the fit of published ellipsometry data in Fig. 5.3, but
we assumed an overall reduction of the dipolar coupling strength by a factor of 2/3.
Broadenings of the various subbands were adjusted to the observed line shape.

within a precision of better than 0.07 eV, resulting in a quite remarkable agreement be-
tween calculated and measured line shapes. Due to the smallness of electron transfer te
and hole transfer th, and due to their destructive interference, the full model does not re-
quire significant changes of the Frenkel parameters determined beforehand. Furthermore,
PTCDA seems to be the only perylene compound studied in this report where the CT
transition ECT

00 is placed significantly below the neutral excitation of a molecule in the
crystalline phase, EF

00. Therefore, weak transitions around 1.95 eV and 2.12 eV arising
from ECT

00 and ECT
01 , respectively, allow the selective excitation of PL from CT states [139].

The value of ECT
00 = 1.95 ± 0.07 eV deduced from the Frenkel-CT model corresponds to

an average CT transition energy of 〈ECT 〉 = ECT
00 + (S+ + S−)h̄ω = 2.12 ± 0.07 eV, in

good agreement with an earlier estimate based on excimer PL arising from a self trapped
CT exciton modeled as a deformed dimer, indicating a value in the range 〈ECT 〉 = 2.14
± 0.08 eV for the undeformed crystal [118].

Me-PTCDI

Among the compounds studied, Me-PTCDI has the largest electron transfer parameter
te, so that the the calculated line shape ℑ(ǫyy) in Fig. 5.1 obtained from the pure Frenkel
exciton model deviates strongly from the observed line shape. Indeed, the particularly
large energetic difference between the strongest observed features at about 2.12 eV and
2.5 eV can only be reproduced with a very large value for te, so that the entire line shape
is separated into two large bands, with weaker features in between. Irrespective of the
position of the CT transition ECT

00 we found clear evidence that the B3LYP/TZ values of
te = −0.104 eV and th = −0.041 eV are slightly too large in absolute size.
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Figure 5.7: Me-PTCDI calculated line shapes compared with digitized observed spectra
[14] at temperatures of 20K and 300K with parameters obtained from Tables 5.2 to 5.5.
Left: comparison of calculated measured dielectric function for light polarization along
y. The curves for 300K are shifted upwards by +12.0 for clarity. Right: comparison of
calculated and measured refractive index. The curves for 300K are shifted upwards +4.0
for clarity. The green dot-dashed line is the background for the higher lying transitions
for the real part of the refractive index,

√

1 + χb(ω).

The measured spectra show a quite strongly absorbing lowest peak well separated from
the band around 2.5 eV (Fig. 5.7), a direct consequence of the large electron transfer
integral. When setting this parameter to zero the area of the lowest peak decreases
significantly, resulting in a graph looking more similar to e.g. PTCDA. Even though the
contribution to the peak at 2.10 eV from the CT states remains small, the removal of
mixing would decrease it to a relative height of one fourth with respect to the subbands
at higher energy. The hole transfer integral is rather small, so that it has only a minor
impact on the overall lineshape.

As shown in Fig. 5.7, slightly reduced parameters for electron transfer of te = −0.090
eV and hole transfer of th = −0.020 eV provide a line shape in good agreement with the
experimental curve when Frenkel and CT transitions are close to degenerate, ∆00 = 0.06
eV. From eqs. (4.25 - 4.27), it can be deduced that at k = 0, the off-diagonal matrix
element between these two transitions is determined by the sum t′h + t′e. The deformation
parameters in Table 5.2 together with te = −0.090 eV and th = −0.020 eV yield t′e =
teS0e0+

S0g0 = −0.062 eV and t′h = thS0e0S0g0+
= −0.017 eV, or t′h + t′e = −0.079 eV. In

contrast to the simpler Frenkel exciton model, the lowest observed subband is no more
placed slightly above the lowest molecular transition EF

00. Instead, the particularly large
interaction between Frenkel and CT manifold pushes it to 0.08 eV below EF

00, but it still
derives the main part of its oscillator strength from this molecular transition. According to
the sum rule eq. (4.46), the increase in EF

00 by 0.13 eV with respect to the value estimated
in the pure Frenkel model corresponds to a reduction in TAA(0) by a similar amount, so
that the F-CT model is now based on a much smaller exciton transfer parameter of only
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TAA(0)=0.08 eV. Therefore, Me-PTCDI can serve as a prototype for a material where
the mixing between Frenkel and CT states has the largest influence on the line shape
of the optical response, as opposed to PTCDA, where the transfer of neutral excitations
represents the most important intermolecular interaction.

The transition dipole µF=5.98 D used for the calculated line shape is below a previous
experimental estimate of 6.8 ± 0.7 D [127] and our TD-DFT value of 7.42 D; compare
Tables 5.5 and 3.11. Such a rather large deviation indicates a questionable absolute scale
of the reflectivity and optical density underlying our experimental model line shape of ǫyy

[14].
In the region of the first valley in the imaginary part of the dielectric function around

2.2 eV, the exciton model cannot provide an optical response of similar size. At the
present stage, we do not know if this reveals a principal limitation of our approach or
merely contributions from a slightly different crystal phase to the measured spectra, e.g.,
based on different orientations of the methyl groups [146].

Similarly to the opposite limit of very small electron and hole transfer parameters
realized for PTCDA, the position of the lowest CT transition can be determined quite
accurately. In Fig. 5.8, the deviation of the calculated spectra from the experimental
reference curve obtained for variations in the CT energy by ±0.05 eV demonstrates that
an uncertainty range of ECT

00 =2.24±0.05 eV at low temperature or ECT
00 =2.26±0.05 eV at

room temperature is a conservative estimate.
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Figure 5.8: Me-PTCDI, with different values for the on-site energies using the best fit as
a starting point and increasing and decreasing it by 50 meV, compared to the line shape
ǫyy deduced from measured data, compare Sec. 4.7.

As Mizuguchis papers have also addressed the reflectivity of Me-PTCDI single crystals,
we have digitized these data to analyze reflectivity with our model. The resulting line
shape can be found in Fig. 5.9, showing good agreement between exciton model and
measured spectra.

Two other groups have done measurements on the optical spectra of Me-PTCDI:
Hoffmann et al. [57] and Lehmann et al. [142]. The Me-PTCDI spectra from Hoffmann
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Figure 5.9: Measured reflectivity of Me-PTCDI (black solid) digitized from [14] compared
with calculations using the Frenkel-CT model: unpolarized reflectivity (red dashed), re-
flectivity for polarization E ‖ b ‖ y (blue dash-dotted), and for E ‖ x ⊥ b (green dotted).
For clarity, the curves for the unpolarized reflectivity are shifted upwards by +0.1.

et al. [127] have a center of mass for the imaginary part of the dielectric function at
〈E〉 = 2.44 eV. The parameters used were close the ones used in the comparison with
Mizuguchis data set, compare Table 5.5.
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Figure 5.10: Comparison of the measured (black solid) by Hoffmann et al. [127], and
calculated (red dashed) refractive index of Me-PTCDI.

Lehmann et al. have derived a Kramers-Kronig consistent dielectric function from
spectroscopic ellipsometry [142], compare Fig. 5.11. The essential features of the dielectric
function obtained by Lehmann et al. can be reproduced with a similar size of ∆00 = 0.06
eV, but shifted EF

00, using EF
00 = 2.25 eV, ECT

00 = 2.31 eV, and TAA(0) = 0.05 eV. The
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shift in the energetic positions of the dielectric response indicates an influence of strain
on the optical observables of thin film grown under different conditions.
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Figure 5.11: Calculated model line shapes for Me-PTCDI (dashed), superimposed to the
measured dielectric function deduced from spectroscopic ellipsometry [142]. The calcula-
tion results from an average over the two diagonal components of the dielectric tensor,
(ǫxx + ǫyy)/2.

PB31

The spectrum of PB31 resembles the one of Me-PTCDI, but in PB31, the very large
splitting between the two strongest features at 2.01 and 2.64 eV is realized by an extraor-
dinarily large hole transfer parameter interfering constructively with a somewhat smaller
electron transfer. In contrast to Me-PTCDI, the relatively large angle between the two
long axes of the two basis molecules in the PB31 unit cell assigns substantial coupling
strengths both to ǫxx and to ǫyy; compare Table 4.1. The published data for the optical
density were measured on polycrystalline films, so that both diagonal elements of the
calculated dielectric tensor have to be averaged. Based on the values th=0.144 eV and
te=0.053 eV, the latter slightly reduced with respect to the B3LYP/TZ reference, our
model can reproduce the experimental line shape quite well; compare Fig. 5.12. Together
with the deformation parameters from Table 5.2, we obtain t′h=0.131 eV and t′e=0.034 eV,
interfering constructively as t′h + t′e=0.165 eV in the off-diagonal matrix element between
ECT

00 and EF
00. Therefore, the lowest subband contributing to the dielectric function has

again mixed Frenkel-CT character. The resulting line shape of the average between ǫxx

and to ǫyy is visualized in Fig. 5.12 reproducing all details of the experimental reference.
The best agreement with the experimental line shape is found if the CT transitions are
significantly above the neutral excitations, with a difference of ECT

00 −EF
00=0.13 eV. From

modified values for the CT transition, we deduce again an uncertainty range of ±0.05
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eV for ECT
00 . The transition dipole of µF=10.38 D underlying the calculated line shape

deviates rather strongly from the TD-DFT reference of µF=8.62 D in Table 5.5 presum-
ably due to a problem in the determination of the measured film thickness of 100 nm
underlying our data analysis [14]. The black color of PB31 is a direct consequence of the
exceptionally large contribution of te + th to the second moment of ℑ(ǫ) according to eq.
(4.50), so that this material absorbs over a quite wide energetic region covering the entire
visible range of the spectrum.
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Figure 5.12: Comparison of calculated dielectric function (left) and refractive index (right)
of PB31 (blue dashed, red dashed) and Kramers-Kronig consistent fit of measured data
(black) [14].

PTCDI

PTCDI shows a quite large broadening of the lowest subband whose FWHM corresponds
roughly to the energy of the calculated effective internal mode of 0.175 eV, see Table 5.2
[143], indicating a particularly large elongation of external vibrational phonons or low
frequency internal vibrations after optical excitation.

The calculated hole transfer integral is fairly large, th = 0.076 eV, and due to the
relative small electron transfer te =0.019 eV the off-diagonal matrix element between ECT

00

and EF
00 is still rather large, t′h + t′e = 0.079 eV. This leads to a strongly modulated optical

response, as in Me-PTCDI and PB31, but the larger broadening gives this peak a broader
base instead of a large height. To identify the subbands contributing we have recalculated
the dielectric function for a reduced broadening. This reveals that the subsequent peaks do
not follow a monotonous rise and then decrease when going to higher energies, but just as
for Me-PTCDI and PB31, there is an intermediate “valley” region with reduced oscillator
strength of the subbands. Although the electron transfer parameter remains the largest
intermolecular interaction as in Me-PTCDI, the larger splitting ECT

00 − EF
00 = 0.13 eV

reduces the impact of F-CT interaction onto the relative strength of adjacent vibrational
subbands.
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Figure 5.13: Left: comparison of the calculated dielectric function of PTCDI (blue dashed
and red dashed) with a reference curve (black) obtained from a Kramers-Kronig consistent
fit of measured data [143]. Right: the same fit parameters but with lower broadenings to
emphasize the individual contributions.

The right panel of Fig. 5.13 reveals that in PTCDI the lowest subband is fairly
prominent, larger than for PTCDA and PR149, but with less weight than for Me-PTCDI
and PB31. In the left panel, the large broadening of the higher peaks makes the main
features merge together, so that all the calculated peaks at 2.30 2.38 and 2.47 eV merge
into a broad absorption band.

The anisotropy is found to be negligible due to the vanishing value of TAB. The relative
strength of the CT transition dipole µCT/µF =0.09 is close to PTCDA. However, due to
the rather large hole transfer integral th =0.076 eV, the lowest peak is pushed quite far
away from the main absorption band. We have checked that both structures move closer
together when assuming vanishing electron and hole transfer, producing a calculated line
shape resembling ǫxx in the case of PTCDA.

PR149

When using parameters for electron transfer and hole transfer in the range obtained
from B3LYP/TZ the agreement of the model calculation in Fig. 5.14 with the dielectric
function deduced from experimental data is fairly good, but the shape of the lowest
vibronic subband cannot be reproduced quantitatively. In the experiment the distance
between the first two peaks is 0.110 eV while for the model it is as large as 0.160 eV.
This failure might indicate that charge transfer between the two basis molecules results
in a substantial redistribution of oscillator strength between the lowest two subbands, an
interaction mechanism not included in our approach. A model calculation with modified
Huang-Rhys factors can improve on this situation, but we do not think such modified
parameters can still have a sound microscopic foundation. Instead, from the TD-DFT
results of the stacked dimer, we found that other low-lying dipole-active transitions occur
rather close to the HOMO-LUMO transition. Therefore, it seems that a more complicated
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exciton model based on several molecular transitions would be required in order to improve
the agreement between calculated and measured line shapes.
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Figure 5.14: Left: model calculation of the dielectric function ǫyy of PR149 (red dashed,
blue dashed) superimposed to Kramers-Kronig consistent dielectric function fitted to the
published optical density [14]. The background of the real part of the dielectric function
was assumed to correspond to Me-PTCDI. Right: refractive index where the green dot-
dashed line is the background for the higher lying transitions for in real part of the
refractive index

√

1 + χb(ω).

DIP

Since the geometric overlap between adjacent DIP molecules in the thin film phase is
almost negligible, all the intermolecular parameters remain particularly small, so that the
crystal spectra are expected to resemble the free molecule. As we have shown in Fig. 5.15
the crystal spectra resemble a Poisson progression with Huang-Rhys factor around S ≈ 1.
With our transfer integrals te = −0.033 eV and th = −0.056 eV close to the B3LYP/TZ
values, the model reproduces all experimental features. The transition dipole of the CT
state is particularly small compared to the other molecules with pCT/pF=0.004.

As discussed in Sec. 3.1, in the thin film phase of DIP the orientation of the transition
dipoles of the two basis molecules determines relative weights of 10−4 and 1 for the two
components ǫxx and ǫyy of the dielectric tensor. From the tilting angle of θ = 19.80 of the
molecular long axes with respect to the substrate normal, we expect the large component
to contribute with a relative weight of cos2 θ = 0.885 to the component of the dielectric
tensor along the substrate normal, and with (sin2 θ)/2 = 0.057 to each of the components
in the substrate plane, where the factor 1/2 arises from the random azimuthal orientation
of the crystallites [11]. In this picture, both observable components of the dielectric
tensor in the Cartesian reference frame of the substrate should be dominated by the large
component ǫyy in the Cartesian reference frame defined by the two molecular transition
dipoles oriented along long axes of the basis molecules, so that the tiny component ǫxx
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cannot be observed separately. In addition, the components of the dielectric tensor in
the substrate plane contain significant contributions from other transitions at energies
somewhat above EF

00 of the HOMO-LUMO transition, presumably CT transitions arising
from other pairs of molecular orbitals [11]. As a result, our model can only address the
component of the dielectric tensor along the substrate normal in the form ǫyy cos2 θ, so that
a comparison between calculated and observed optical line shape yields only TAA + TAB.
As a calculation of ǫxx based on an exciton transfer TAA−TAB cannot be compared to the
observed in plane component of the dielectric tensor, the transfers TAA and TAB cannot
be determined separately. Instead, we found that TAA + TAB = 0.095 eV together with
∆00 = ECT

00 − EF
00 = 0.28 eV gives excellent agreement with the observed out of plane

component of the dielectric tensor, compare Fig. 5.15.
By changing the energy difference ECT

00 −EF
00 by ±0.05 eV we find a large deterioration

of the line shape. In this way we can pinpoint the difference between the two types of
crystal excitations to be in the range ∆00 = ECT

00 −EF
00=0.28±0.05 eV.
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Figure 5.15: Dielectric function along the normal of the thin film phase of DIP ([11]), and
calculated dielectric function ǫxx, scaled down by a prefactor cos2θ calculated from the
tilting of the long axis of DIP molecules from the substrate normal by θ=19.8◦.

DDTP

Among the two crystal phases of DDTP, a detailed geometry of the molecular geometry
in the crystal unit cell has only been presented for phase II, whereas for phase I, it has not
been reported [103]. Therefore, the derivation of microscopically founded transfer param-
eters among stack neighbors can only be performed for phase II, so that in the following,
the comparison between calculated and measured optical spectra will be restricted to this
phase.

As mentioned before in Sec. 2.3.1 the geometric arrangement of DDTP can be seen
as two pentacene molecules crossing each other. When studying the individual valence
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orbitals the resemblance is further accentuated, compare Fig. 5.16 where the HOMO
and LUMO character of pentacene can be identified. The similarity between the frontier

Figure 5.16: Valence orbitals of DDTP.

orbitals in DDTP and in pentacene raises the question how far the optical spectra of this
compound will resemble crystalline pentacene. On the other hand, the stacking vector
of only 3.775 Å reported in Table 3.4 is among the shortest of all perylene compounds
investigated in this thesis, far below the stacking vector of pentacene which is as long as
6.14 Å [147].

In the exciton model, we found that the hole transfer parameter th yielding the best
agreement with the observed spectra are still close to the B3LYP/TZ values, but the
respective value for te is somewhat too large, compare Tables 3.6 and 5.3 and the absorp-
tion line shape in Fig. 5.17. The lowest observed peak at 1.88 eV is remarkably close to
the lowest absorption band in crystalline pentacene at 1.85 eV [148]. However, from the
parameters of the exciton model summarized in Table 5.5, this energy cannot be identified
with EF

00.

The coincidence between the energy of the lowest absorption band in DDTP and in
crystalline pentacene raises the question how far this perylene compound can be used
as a model for pentacene. From band structure calculations of pentacene, there is clear
evidence that electron and hole transfer between the different basis molecules dominates,
so that a Frenkel-CT model for pentacene should definitely include the respective entries.
Modulation spectroscopy has helped to assign the energy of the CT state in crystalline
pentacene to 2.12 eV, an energy representing presumably ECT

00 . However, since DDTP
has a smaller distance of only 3.78 Å along the stacking direction compared to the
shortest intermolecular separation in pentacene of 5.01 Å [147], we expect the value
∆00 = ECT

00 −EF
00 to be higher in pentacene, compare Fig. 5.2. This is just a rule of thumb

while the DDTP perylene core is both bended and two OH-groups are attached, so that
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FRENKEL EXCITONS AND CT TRANSITIONS

DDTP does not necessarily follow the same dependence of ∆00 on distance as the other
perylene molecules. Even though in pentacene the dominating interaction mechanism
of Frenkel excitons and CT states will definitely require both basis molecules, the key
parameters like EF

00 and the effective values for the interference between the electron and
hole transfer parameters required in an exciton model seem to be quite similar to the
respective values in DDTP. On the other hand, DDTP has a very high transfer parameter
TAA(k = 0) = 0.145 eV for Frenkel excitons, below the respective value of about 0.25 eV
expected from line shape analysis according to the sum rule eq. (4.46).
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Figure 5.17: Measured (black solid lines) [144] and calculated (red dashed line) absorption
of DDTP in phase II.

5.3.3 Summary

For all perylene compounds investigated, the F-CT model could reproduce the essential
features of the observed spectra [149]. In most cases, the B3LYP values for the transfer
parameters te and th are close to the values used to fit the observed line shapes. The
constrained DFT method used for parameterizing the elongation of the effective internal
mode in the relaxed excited state produces a Huang-Rhys parameter S lying systemati-
cally slightly above the value deduced from solution spectra. Therefore, the contribution
of internal deformations to the second moment of the absorption band in somewhat too
large, a fact we have compensated by reducing the size of the relevant transfer parameter
te + th by a small amount with respect to the B3LYP reference. Including these minor
modifications of the DFT parameters for transfer of electrons and holes we have demon-
strated that an exciton model accounting for the interference between Frenkel excitons
and charge transfer transitions can quantitatively reproduce the observed optical spectra
of several perylene compounds.

For compounds with relatively small electron and hole transfer, in this report PTCDA
and DIP, the mixing of Frenkel and CT states results only in marginal modifications
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of the neutral molecular excitation energy and the respective transfer matrix elements
derived from a sum rule for the average transition energy of the Frenkel excitons. For
crystals with stronger mixing of Frenkel and CT features, which was the case for all the
other perylene compounds studied, the complete exciton model is needed to quantify the
progression over the various vibronic subbands, and the preliminary parameters obtained
in the Frenkel model have to be refined.

At this level, for compounds with substantial sum of fermionic transfer parameters
te + th, the exciton model allows to determine the energies of CT transitions along the
stacking direction within a precision better than 0.05 eV, an uncertainty range far below
systematic deviations occurring in HF, DFT, or microelectrostatic calculations.

5.4 Photoluminescence excitation of PTCDA

The physical origin of the excitonic emission in polycrystalline molecular films and in
polymers has been the subject of intense research for more than 20 years. In this con-
text, photoluminescence excitation spectroscopy (PLE) has become a powerful optical
technique allowing to establish a correspondence between specific absorption resonances
and the resulting radiative recombination channels. For twisted molecules like para-
hexaphenyl and various conjugated polymers, PLE has demonstrated a dependence of
the photoluminescence (PL) bands on the excitation energy: When exciting above a cer-
tain threshold energy, the PL bands do not depend on the excitation energy, but below
this threshold, they follow the excitation energy with a constant Stokes shift [150, 151].
This finding has been interpreted as a consequence of an inhomogeneously broadened
distribution of transition energies, so that excitation at sufficiently high energy allows the
exciton to migrate to any other site before eventually recombining under emission of a PL
photon, whereas excitation in the lower part of the distribution addresses specific sites
with low transition energies, so that the exciton remains in the same spatial region before
eventually emitting in the region of the red edge of the inhomogeneously broadened PL
band. This corresponds to a red shift with respect to the entire distribution of recombi-
nation energies which would become available when exciting above the threshold energy.
Therefore, this threshold is interpreted as a localization energy, defining the demarcation
between high energy excitons migrating between sites, and low energy excitons remaining
confined in the spatial region where they have been excited [150].

Due to the rigidness of perylene-based chromophores and pentacene compared to poly-
mers, a variation of the conjugation length or an internal twisting of the molecule can be
excluded as a source of inhomogeneous broadening. Instead, external phonon modes are
strongly elongated by optical excitations, resulting eventually in a pronounced Raman
activity and correspondingly to rather broad absorption features [152, 153, 154].

Among these materials, the emission from molecular PTCDA single crystals and poly-
crystalline films shows a particularly rich variety of excitonic bands at low temperatures
(10-100 K) [12, 155] and the identification of these recombination channels is still subject
of intense debate. In this section, we analyze PLE spectra obtained on this compound,
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allowing eventually to corroborate previous assignments of the various PL channels by
identifying the respective PLE resonances.

Early PL investigations of PTCDA at low temperatures [12, 155] assign the high energy
emission to Frenkel exciton transitions and attribute emission bands at lower energy to
non-relaxed as well as to self-trapped charge transfer (CT) excitons. Several theoretical
models that include Frenkel excitons, CT excitons and self-trapped excitons [126, 57, 59,
156] have been developed to describe and support the experimental observations.

More recent investigations use time-resolved PL (TRPL) measurements on α-PTCDA
single crystals and on polycrystalline films to differentiate various recombination channels
[157, 158, 159, 160]. The TRPL studies were performed in the temperature range from
10 to 300 K. From the recombination times that were detected within the emission band,
five different exciton emission channels have been isolated at low temperature [58, 159]:
(1) A high energy emission band around 1.95 eV due to a non-relaxed charge transfer
transition (CT2-nr) between two PTCDA molecules stacked along the a direction, (2)
a pronounced Frenkel exciton transition with emission maximum at ∼1.82 eV starting
from a minimum of the excitonic dispersion at the surface of the Brillouin zone, (3) a
relaxed charge transfer transition between two PTCDA basis molecules within the same
unit cell (CT1) with a peak energy at ∼1.85 eV, (4) a self-trapped CT2 exciton involving
a reduced distance between stacked PTCDA molecules with peak energy at ∼1.71 eV,
and (5) the respective excimer transition with a PL maximum at ∼ 1.76 eV which is weak
at low temperature but becomes the dominant band at higher temperatures (T > 200 K).
Accordingly, the E-band is attributed to excimer-like states that are preferentially formed
at stacking defects in PTCDA layers. For 650 nm thick polycrystalline PTCDA films, in
the region around 2.1 eV, a twentyfold enhancement of the PL efficiency was observed
with respect to excitation into the Frenkel exciton manifold above 2.2 eV, revealing a
particular excitation resonance [12]. A resonance of the photocurrent in the same region
around 2.1 eV indicates an excitation resonance favoring charge separation [161]. These
band assignments are supported by recent PL measurements under uniaxial pressure [162].
With increasing pressure, the CT2 gains intensity relative to the Frenkel exciton emission,
and the CT2 transition reveals a shift to lower energies. Both observations are attributed
to an increased exciton trapping probability and to an enhanced binding energy at a
reduced distance between stacked molecules. These interpretations as well as the above
mentioned band assignments are further supported by theoretical models that handle pure
Frenkel exciton transitions [129, 122, 163] and CT states separately [118].

In addition to the PL investigations, only a few studies have applied the technique of
photoluminescence excitation (PLE) to PTCDA films [108, 164]. In these investigations
the tunable excitation source covers the PTCDA absorption band from ∼2.0 eV up to
∼3.0 eV. The change of the PLE signal as a function of the substrate temperature [108]
and of the growth temperature [164] of deposited films was used to study the influence of
the α- and β-phase growth morphology on the optical properties rather than to identify
different PL lines according to their electronic nature. In particular, investigations on
PTCDA films deposited on different substrates like quartz, KCl, and NaCl attribute the
energy band at ∼1.85 eV (Y-line) to the β-phase of PTCDA, whereas the low energy
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band at ∼1.71 eV (E-band) is assigned to the α-phase [108]. More recent investigations
on PTCDA films deposited on Ag(111) [164] at different growth temperatures show a weak
dependence of the Y-line as a function of the PTCDA growth morphology whereas the
E-band shows an intensity maximum in a temperature regime where the α- and β-phase
coexist. Accordingly, the E-band is attributed to excimer-like states that are preferentially
formed at stacking defects in PTCDA layers.

The PLE measurements analysed in the following have been obtained on α-PTCDA
single crystals and polycrystalline films grown on naturally oxidized Si(100) substrate.
The optical excitation energy was varied below the 0-0 Frenkel exciton absorption band,
allowing the selective excitation of Frenkel excitons as well as of various CT excitons.

The interpretation of the PL and PLE spectra discussed in the following is based on
existing calculations concerning the dispersion of pure Frenkel excitons [129] and inves-
tigations of PL from self-trapped CT excitons involving two stack neighbors at reduced
intermolecular distance [118]. Moreover, the full Frenkel-CT exciton model will be ap-
plied to an assignment of the PLE resonances, and the excitonic dispersion derived from
the Hamiltonian according to eq. (4.36) corroborates previous assignments of the various
radiative recombination channels.

5.4.1 Experimental results

The PLE measurements were performed with an Ar-ion laser (λ = 514 nm) pumped dye
laser as variable excitation source. The covered energies ranged from 1.88 eV to 2.15 eV.
Details on the experimental setup can be found in [139]. Fig. 5.18 shows the PL of a
PTCDA single crystal at 5 K at various excitation energies ranging from 1.878 to 2.149
eV and at a laser power of 100 µW.

At the lowest excitation energy (1.878 eV), significantly below the 0-0 transition of the
CT2 exciton assigned to 1.95 eV in Fig. 5.18, a broad emission band with a peak at 1.72 eV
can still be excited. As this excitation energy does not correspond to any excitonic state in
the ideal periodic crystal, this excitation channel is assigned as a defect in the crystal, e.g.
a stacking fault . Since this PL band around 1.72 eV is close to the CT2 transition energy
identified by time-resolved PL measurements on PTCDA crystals at low temperatures
[58, 158], this is assigned to the self-trapped CT2 exciton transition between oppositely
charged stacked PTCDA molecules at a reduced distance. The CT2 band reaches its
intensity maximum at an excitation energy of 1.893 eV and then decreases at higher
excitation energies up to 1.92 eV. When exciting above 1.90 eV, a second PL band with
rapidly increasing intensity emerges at energies above 1.8 eV. With increasing energy, the
center energy of this band shifts linearly to higher values and reaches a constant value (∼
1.86 eV) at excitation energies larger than 1.968 eV. This emission band is assigned to the
relaxed CT1 transition between PTCDA molecules within the same unit cell. In addition
a weaker emission band appears in the PL spectra, separated from the CT1 band by ∼160
meV to lower energy. This weak PL band shows the same excitation energy dependence
as the CT1 emission. Accordingly, it is attributed to the first vibronic subband of the CT1
transition where the energy difference of ∼160 meV corresponds to the effective internal
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Figure 5.18: Excitation PL spectra of a PTCDA single crystal at 5 K at excitation energies
ranging from 1.878 to 2.149 using DCM and Phodamine 6G dye lasers as labeled [139].
The topmost spectrum is excited with an Ar ion laser at an excitation energy of 2.411
eV. The PL spectra are offset to each other for clarity and the weakest spectra at low
excitation energy are multiplied by different magnification factors as labeled.

vibrational mode of the molecule at about 170 meV [12, 57].

Above 2.018 eV excitation energy, the CT1 emission decreases, and two new PL bands
appear at ∼1.79 and at ∼1.92 eV. With increasing excitation energy the intensities of
both bands increase rapidly. The emission at ∼1.92 eV shows a blue shift with increasing
excitation energy similar to that of the CT1 transition and its vibronic subband at lower
energy. The 1.79 eV emission band also shows a shift to higher energy, but with a
significantly lower rate. For higher excitation energies (>2.12 eV) consult [139].

Figs. 5.19 and 5.20 summarize the shifts of the spectral positions and the PL intensities
(Gaussian areas) of the different recombination channels, respectively, as a function of the
excitation energy ranging from 1.878 to 2.149 eV. The center energies Ej and the Gaussian
areas aj of the emission bands were deduced from Fig. 5.18.

Fig. 5.19 clearly reveals a blue shift of the CT1 emission and its vibronic subband
when the laser starts to excite the low energy part of the inhomogeneously broadened
distribution of the CT1 states. Since the density of these low energy states is small, the
PL intensity is initially weak but rapidly grows with increasing excitation energy due to
the rising number of accessible states, as shown in Fig. 5.20. When the laser excitation
exceeds the maximum of the CT1 state distribution, the optically excited states start
to relax into energetically lower lying states. Therefore, the CT1 emission resembles the
density of states distribution leading to constant PL center energies of ∼1.86 and ∼1.70 eV
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Figure 5.19: Different exciton emission channels in a PTCDA crystal at 5 K as a function
of the excitation energy ranging from 1.878 to 2.149 eV. The emission channels are ob-
tained from the spectra in Fig. 5.18 by a multi-Gaussian decomposition of the observed
line shape as described in the text.

Figure 5.20: PL intensity (Gaussian areas) of different emission channels in PTCDA crys-
tals at 5 K as a function of the excitation energy ranging from 1.878 to 2.149 eV obtained
from the spectra in Fig. 5.18. Arrows indicate the energy positions of the distribution
maxima of CT2, CT1 and CT2-nr states, respectively. In addition an absorption curve
derived from the optical density of a 36 nm thick PTCDA film on Pyrex at 10 K using a
Kramers-Kronig consistent model for the complex refractive index is shown as black solid
line.

for the CT1 and its vibronic subband, respectively. Since the density of states decreases
at energies above the peak of the CT state distribution, the PL intensity of the CT1
transition and its vibronic subband decreases for excitation energies higher than 1.983 eV
(see Fig. 5.20).
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For excitation energies larger than ∼2.04 eV the indirect Frenkel exciton and the
CT2-nr start to occur in the PL spectra. While the CT2-nr transition energy shows a
similar dependence as the CT1 transition for laser energies that are below the maximum
of the state distribution, the Frenkel exciton transition reveals an unexpectedly weak
excitation energy dependence (see Fig. 5.19). Although the optical excitation energies
are significantly lower than the |0g〉 → |0e〉 absorption energy of ∼2.20 eV [129, 122, 163]
the relaxed Frenkel exciton transition energy reached its final value of 1.82 eV already at
∼2.15 eV excitation energy.

5.4.2 Excitonic dispersion

In accordance to Chap. 4, the exciton model discussed in the following includes neutral
molecular excitations and CT transitions between stack neighbors. In order to remain
compatible with previous assignments of PL spectra summarized in Sec. 5.4.2 [158], in the
present section 5.4.2, the CT state along the stack will be called CT2, whereas a further
CT state involving both basis molecules in the unit cell will be called CT1. According to
Sec. 4.3, neutral molecular excitations and CT2 states are coupled via electron transfer
te and hole transfer th as to eq. (4.33).

Due to momentum conservation, the small wave vector of the photon results in an
excitonic Bloch wave close to the Γ point of the Brillouin zone, or k = 0. For this
particular wave vector, electron and hole transfer interfere constructively according to
t′h + t′e, but for PTCDA with its nearly parallel valence and conduction bands, te and
th have opposite signs, so that the contribution of the Frenkel-CT mixing to the second
moment of the absorption band according to

(∆E)2 = S(h̄ω)2 + 2(te + th)
2 (5.2)

remains much smaller than the second moment of the Poisson progression over the effective
internal mode, S(h̄ω)2. In the calculation of the optical line shape, the energy of a
CT2 state involving two stacked molecules in the undeformed crystal remains the only
relevant fitting parameter required for an optimum agreement with published optical
data [140, 110, 141]. As discussed in Sec. 5.3.2, the comparion of this model with
the dielectric tensor of α-PTCDA single crystals obtained at room temperature provides
values EF

00 = 2.17 eV and ECT2
00 = 1.95 ± 0.07 eV for the fundamental 0-0 transitions

of the neutral molecular excitation and of charge transfer along the stack, respectively
[149]. Due to the particularly small mixing between Frenkel excitons and CT2 states via
electron transfer te and hole transfer th according to te + th = −10 meV, the influence of
the CT2 state on the linear optical properties remains rather small, so that a comparison
between calculated and observed spectra does not allow for a more precise determination
of the CT2 transition energy.

At low temperatures, the stacking vector of PTCDA is reduced by about 1.5 %, re-
sulting in a red shift of the absorption band by about 0.02 eV [14, 51]. Assuming that
the CT2 transition shifts by the same amount, this would place the fundamental transi-
tions at EF

00 = 2.15 eV and ECT2
00 = 1.93 ± 0.07 eV. In the following, we choose a value
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of ECT2
00 = 1.95 eV for the CT2 transition along the stack, still within the conservative

uncertainty range derived from the comparison between the calculated dielectric tensor
and the observed values deduced from spectroscopic ellipsometry [141].
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Figure 5.21: Excitonic dispersion in α-PTCDA at low temperature. Blue dash-dotted:
dipole-forbidden vibronic levels of CT2 exciton involving stack neighbours; black, red
dashed: dispersion branches of dipole-allowed mixed Frenkel-CT2 states, black for light
polarized along x (in ac plane) and red dashed for light polarized along y (parallel to b
lattice vector); green dotted: vibronic levels of CT1 exciton involving both basis molecules.

With these ingredients, the previous calculation of the excitonic states in the center
of the Brillouin zone can easily be generalized to finite wave vectors. Fig. 5.21 shows the
calculated excitonic dispersion branches at low temperatures, where the calculated optical
properties derived from the dipole-allowed states at Γ are again in good agreement with
the observed spectra [127, 165]. The dispersion branches with a large Frenkel exciton
parentage are highlighted, and the lowest pair with maxima around 2.20 and 2.22 eV
can be analysed further in terms of the Davydov splitting between the lowest absorption
peaks occurring for orthogonal polarizations [141], compare Sec. 5.3.2. Moreover, the
minima of these dispersion branches at the surface of the Brillouin zone close to 2.14
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eV give rise to vertical radiative recombination to excited vibronic levels of the effective
internal vibration, as indicted by the arrow downwards [122, 163]. Due to the low-lying
CT transitions, several excitation resonances below the lowest Frenkel dispersion branch
are worth mentioning: The fundamental ECT2

00 = 1.95 eV for charge transfer along the
stack, the region between 2.10 and 2.12 eV in resonance with ECT2

01 = 2.12 eV, and the
fundamental ECT1

00 = 1.98 eV for charge transfer between the two basis molecules in the
crystal unit cell. As the electron or hole transfer between the two basis molecules is
expected to be smaller than the respective transfers along the stack, the CT1 states are
not included in the exciton model, so that their dispersion branches are visualized by
horizontal lines. From the PLE spectra summarized in Sec. 5.4.1 above, a suitable CT1
energy in the crystal can be obtained, as visualized in Fig. 5.21.

5.4.3 Interpretation of PLE and PL resonances

According to model calculations of the excitonic dispersion in Sec. 5.4.2 [149], the mini-
mum of the lowest dispersion branch dominated by Frenkel excitons at the surface of the
Brillouin zone occurs about 70 meV below the dispersion maxima at Γ [129, 166], com-
pare Fig. 5.21. After thermal relaxation into this energetic minimum the lowest accessible
final state for recombining excitons is the |1g〉 state which lowers the transition energy
by about 170 meV, corresponding to the energy of an effective internal vibration. The
PL energy from this dispersion minimum is further reduced by about 110 meV caused by
low frequency modes [163, 166] resulting in a total Stokes shift of ∼0.39 eV for optical
excitation resonant to the 0-0 dispersion branch of the Frenkel exciton at the Γ-point.
Even at the highest excitation energy of ∼2.15 eV in our PLE measurements, the ex-
pected Stokes shift of the Frenkel exciton emission amounts to only 0.33 eV. Therefore,
opposite to the CT transitions at lower energies, excitation at 2.15 eV in the low-energy
edge of the 0-0 Frenkel resonance allows the observation of the entire density of states of
the respective PL channel. On the other hand, at energies ranging from ∼2.05 to 2.15
eV, the PL from Frenkel excitons shows a red shift similar to the excitation of CT states
below their absorption resonance. We therefore suggest that in this energetic range, the
observed Frenkel exciton PL band is generated by selective excitation of spatial regions
with a particularly low-lying transition energy.

Moreover, in this energetic region, excitation into the mixed Frenkel-CT2 states dom-
inated by ECT2

00 basis states at 2.10 and 2.12 eV might still contribute to emission from
the dispersion minimum of the lowest branch dominated by Frenkel excitons at 2.14 eV.

The mixed F-CT2 states around 2.10−2.12 eV discussed above seem to be the relevant
excitation channel resulting in the CT2-nr PL band occurring at a constant emission
energy of ∼1.97 eV at an excitation energy above ∼2.10 eV. As for the relaxed CT2
transition, the observed Stokes-shift of ∼130 − 150 meV exceeds the shift of ∼110 meV
caused by low energy modes [163, 166].

In contrast to the Frenkel exciton band the CT2-nr band does not further increase it
Gaussian area for excitation above ∼2.10 eV, indicating that the distribution maximum
of these states has been reached by the exciting laser line.

124



CHAPTER 5. APPLICATION TO PERYLENE COMPOUNDS

Excitation around 2.10 eV also leads to an enhanced PL of self-trapped CT2 states
which additionally contribute to the PL intensity and spectral width of the low energy
band at ∼1.69 eV that is eventually composed by the non-resolved CT1 and Frenkel
exciton subbands as well as by the PL band of CT2 states generated by the relaxation
of CT2-nr states into self-trapped CT2 excitons involving a reduced stacking distance
between an anionic and cationic molecule.

5.4.4 Summary photoluminescence

Photoluminescence excitation studies on α-PTCDA single crystals and polycrystalline
PTCDA films were compared to the calculated excitonic dispersion deduced from an ex-
citon model including the coupling between Frenkel excitons and charge transfer along
the stacking direction. For excitation energies below the 0-0 Frenkel exciton absorption
band at 5 K, these measurements enable the selective excitation of several CT states.
The CT2 state involving stacked PTCDA molecules gives an excitation resonance for
photoluminescence from the self-trapped CT2 exciton and from the non-relaxed CT2-nr
state. Moreover, the fundamental transition of the CT1 involving both basis molecules
in the crystal unit cell can be determined from the respective excitation resonance. The
excitation energy dependence of the different emission bands allows the assignment of
the fundamental transition energies of the CT2 and CT1 excitons to 1.95 eV and 1.98
eV, respectively. When the excitation energy exceeds ∼2.10 eV, we observe a dominating
emission channel related to the indirect minimum of the lowest dispersion branch dom-
inated by Frenkel excitons. Temperature-dependent PL measurements between 10 and
300 K at an excitation energy of 1.88 eV further allow a detailed investigation of the
relaxation behavior of the isolated CT2 and its vibronic subband.
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Chapter 6

Conclusion

So far, the crystallochromy of perylene pigments has not been fully understood. Therefore
the aim of this thesis was to combine a theoretical model and a physically well founded
parameter set obtained with ab initio methods, and to compare these model calculations to
experimental results, allowing us to describe the physical mechanisms behind the optical
attributes of perylene pigments.

The calculated deformation patterns, reorganization energies and vibrations of the
single molecule were found to be in excellent agreement with observed solution spectra and
resonant Raman cross sections. From these properties the effective vibrational modes and
Huang-Rhys factors for three different electronic configurations were extracted, including
neutral excited, anionic and cationic states. In total a number of ten different organic
molecules were studied in their dissolved state. Calculations could also reproduce pre-
resonant Raman spectra giving further support to the ab initio approaches used. We found
that for the planar organic molecules such as the perylene compounds and pentacene where
the lowest transition contains nearly 100% of HOMO-LUMO excitation, a constrained
DFT approach could describe the deformation pattern better than TD-DFT. On the other
hand, for the non-planar molecules such as TPD and rubrene, the TD-DFT approach was
found to be more consistent with experiments.

Concerning crystalline perylene pigments the calculated values of the transfer param-
eter along the stacking direction could be verified experimentally for crystals of PTCDA
and Me-PTCDI, and the approximate values of electron and hole transfer obtained with
the B3LYP functional could reproduce the observed optical spectra for all seven com-
pounds investigated. However, the calculated values for the exciton transfer along the
stack were not in agreement with the values obtained from the exciton model. Instead a
sum rule was applied to the experimental spectra, allowing to deduce the transfer param-
eter TAA(k = 0) directly from the observations.

The model itself includes Frenkel excitons and charge transfer states. The different de-
formation patterns from the ionized states are taken into consideration, allowing to study
in detail the contribution of charge transfer transitions to the optical spectra. The model
is a quasi one-dimensional model motivated by the fact that the stacking geometry of the
molecules results in a much larger electronic or excitonic interaction along the stacking
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direction than between the two basis molecules. According to the traditional theoretical
tools applied to periodic crystals, the exciton Hamiltonian based on localized electronic
excitations was block-diagonalized by applying a Fourier transform to the wave vector k
of an excitonic Bloch wave. By using calculated transition dipole moments for neutral
excitations of the two molecules in the unit cell, and of the CT transition dipoles along the
respective stacks, the optical anisotropy in the xy-plane could be investigated. For most
compounds, the model allows to determine the energies of CT transitions along the stack-
ing direction in the crystalline phase within a precision better than 0.05 eV, an uncertainty
range far below systematic deviations occuring in Hartree-Fock, DFT, or microelectro-
static calculations. The energy of the lowest CT state is crucial for optoelectronic device
applications of semiconducting crystalline molecular materials. Furthermore, in the fu-
ture, these improved values for the CT energies should allow for a deeper understanding
of device related observables like photocurrents and a refinement of existing microscopic
models for photoluminescence along the lines discussed in this thesis.

We have demonstrated that an exciton model accounting for the interference between
Frenkel excitons and charge transfer transitions can quantitatively reproduce the observed
optical spectra for a set of perylene pigments, including the pronounced anisotropy of the
dielectric tensor, and related optical observables like reflection, optical density and ex-
tinction coefficient. The excellent agreement obtained corroborates the validity of the
assumptions underlying the exciton model and the reliability of the microscopic parame-
ters derived with DFT. This work demonstrates the high relevance of a theoretical model
for quantifying the color generation mechanism in pigments.

We have found that DDTP shows properties inbetween perylene and pentacene. Even
though it has a perylene core its geometrical arrangement and orbitals resembles two
pentacene molecules crossing each other at an angle of 60◦. In the DDTP crystal, the
lowest subband arising from the HOMO-LUMO transition is reasonably close to the re-
spective feature observed in crystalline pentacene, but the lowest CT transition energies
differ significantly. Nevertheless, it seems realistic that an extension of the exciton model
discussed in this thesis to charge transfer between the two basis molecules will contribute
to a deeper understanding of the optical spectra of pentacene crystals.

128



Bibliography

[1] W. Herbst and K. Hunger, Industrial Organic Pigments, Wiley-VCH (Berlin 2005).
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[55] V. Coropceanu, J. M. André, M. Malagoli, and J. L. Brédas, Theor. Chem. Acc. 110,
59 (2003).

[56] G. Mazur, P. Petelenz, and M. Slawik, J. Chem. Phys. 118, 1423 (2003).

[57] M. Hoffmann and Z. G. Soos, Phys. Rev. B 66, 024305 (2002).

[58] A. Yu. Kobitski, R. Scholz, D. Tenne, T. U. Kampen, H. P. Wagner, and D. R. T.
Zahn, Appl. Surf. Sci. 190, 386 (2002).

[59] M. H. Hennessy, Z. G. Soos, R. A. Pascal, and A. Girlando, Chem. Phys. 245, 199
(1999).

[60] R. Scholz, A. Yu. Kobitski, T.U. Kampen, M. Schreiber, D. R. T. Zahn, G. Jung-
nickel, M. Elstner, M. Sternberg, and Th. Frauenheim, Phys. Rev. B 61, 13659 (2000).

[61] K. Akers, R. Aroca, A. M. Hor, and R. O. Loutfy, Spectrochim. Acta 44A, 1129
(1988).

131



BIBLIOGRAPHY
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Appendix

A.1 Fourier transform of the infinite stack

Since we assume periodic boundary conditions for a cyclic stack of N molecules, or in
other words a infinite chain, we can convinient Fourier transform the operators of the
model. Fourier transform of the Frenkel operator can be written as

b†
kανe

=
1√
N

∑

n

e−ikRn,αb†
nανe;nα0, (A.1)

which gives the back transform

b†
nανe

= b†
nανe;nα0 =

1√
N

∑

k

eikRn,αb†
kανe

. (A.2)

Since we have periodic boundary conditions we can write
∑

n

ei(k−k′)n = Nδkk
′ (A.3)

Inserting the operators b†
nανe

according to eq. (A.2) together with a similarly defined
adjoint operator bnανe

, the Frenkel Hamiltonian will then transform to

HF =
∑

nανe

E0νe
(

1√
N

∑

k

e−ikRnb†
kανe

1√
N

∑

k′

eik′Rnbk′ανe
) +

∑

nανe

∑

mβµ

tnανe,mβµ(
1√
N

∑

kk
′

e−ikRn
1√
N
eik′Rmb†

kανe
bk′βµ) =

=
∑

ανe

E0νe

∑

kk
′

1

N

∑

n

e−i(k−k
′)Rnb†

kανe
bk′ανe

+

∑

ανe

∑

βµ

∑

kk
′

1

N

∑

mn

tnανe,mβµe
ikRn+ik′Rmb†

kανe
bk′βµ =
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∑

ανe

E0νe

∑

kk
′

δkk
′b†

kανe
bk′ανe

+
∑

ανe

∑

βµ

∑

kk
′

∑

m

1

N
{
∑

n

tαβ(Rm−Rn)eik(Rm−Rn)}e−i(k−k′)Rmb†
kανe

bk′βµ =

=
∑

ανe

E0νe

∑

k

b†
kανe

bk′ανe
+

∑

ανe

∑

βµ

∑

kk
′

1

N
{
∑

n

tαβRle
ikRl}

∑

m

e−i(k−k′)Rm
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Nδ
kk′

b†
kανe

bk′βµ =

=
∑

ανe

E0νe

∑

k

b†
kανe

bkανe
+

∑

ανe
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where
tαβ(k) =

∑

l

eikRltαβ(Rl). (A.5)

so that blocks for different wave vectors decouple,

HF =
∑

ανe

E0νe

∑

k

b†
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bkανe
+

∑

ανe

∑

βµ

∑

k

tαβkb
†
kανe

bkβµ. (A.6)

With the same reasoning using the operators described in eq. (4.28) and (4.29) the
Fourier transform of the CT Hamiltonian becomes

HCT =
∑

γη

Ecγη

∑

m

(
1

N
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∑
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kγη,+1ckγη,+1), (A.7)

or
HCT(k) =

∑

γη

Ecγη(c
†
kγ,−1ckγη,−1 + c†

kγη,+1ckγη,+1). (A.8)

Finally the Fourier transform of the F-CT Hamiltonian reads:

HF−CT =
∑

nνe

∑

mγη

(
1
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∑
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′
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′
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∑
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A.2 Transition dipole moments

The Frenkel transition dipole moment can be derived using eq. (4.41):
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=
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(A.10)

and for the CT dipole we use eq. (4.42):
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∑
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where
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1√
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n−1 | µ | φ+
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−
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−
n−1〉 (A.12)
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A.3 Huang-Rhys factor

Starting from the expression |χe0〉 = e−g2/2ega†
g | χg0g〉, we derive the Huang-Rhys factor

Sµν for transition between an electronic ground state in vibronic level µ and an electronic
excited state in vibronic level ν, by studying the overlap between these states
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= 〈χgµ | 1√
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A.4. VISUALIZATION OF ORBITALS IN MOLECULE PAIRS

A.4 Visualization of orbitals in molecule pairs

Figure A.1: PB31 orbitals

Figure A.2: PR149 orbitals, revealing HOMO and HOMO-1 wave functions containing a
hybridization between π orbitals localized on the core region and on the xylyl groups.
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Figure A.3: DIP orbitals
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A.5 Tables of vibronic modes

This section contains the calculated modes for single molecules.

mode cation anion neutral neutral
B3LYP Raman [63] DFT DFT c-DFT TD-DFT

λj Sj λj Sj λj Sj λj Sj

(cm−1) (cm−1) (1) (cm−1) (1) (cm−1) (1) (cm−1) (1)
211 220 18 0.090 21 0.104 84 0.421 59 0.296
351 239 4 0.012 2 0.007 0 0.000 0 0.000
401 390 65 0.171 60 0.159 0 0.000 0 0.000
467 435 6 0.013 0 0.001 4 0.010 3 0.007
524 538 8 0.016 68 0.137 16 0.031 16 0.032
556 569 40 0.077 7 0.013 57 0.109 50 0.096
708 720 5 0.008 4 0.005 1 0.002 2 0.003
943 961 33 0.037 0 0.000 16 0.018 11 0.012
1056 1 0.001 1 0.001 0 0.000 0 0.000
1074 1085 2 0.002 28 0.028 5 0.005 0 0.000
1193 1181 2 0.001 4 0.003 6 0.006 5 0.005
1195 1203 1 0.001 7 0.007 10 0.009 8 0.007
1277 1290 0 0.000 7 0.006 4 0.004 2 0.001
1284 1301 4 0.003 39 0.032 49 0.040 25 0.020
1298 1318 168 0.137 153 0.125 460 0.375 304 0.247
1351 1370 2 0.002 141 0.110 87 0.068 51 0.040
1361 1381 49 0.038 17 0.013 83 0.064 42 0.033
1420 1455 3 0.002 45 0.034 41 0.030 26 0.019
1445 28 0.021 3 0.002 10 0.007 6 0.004
1552 1570 73 0.050 123 0.084 272 0.185 190 0.129
1557 1581 12 0.008 241 0.163 76 0.052 52 0.035
1596 1588 47 0.031 18 0.012 6 0.004 3 0.002
Sum: 0.336 0.625 0.867 0.558

Table A.1: As Table 2.6, but for Me-PTCDI.
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mode cation anion neutral
B3LYP Raman [64] DFT DFT c-DFT

λj Sj λj Sj λj Sj

(cm−1) (cm−1) (1) (cm−1) (1) (cm−1) (1) (cm−1)
227 247 5 0.025 39 0.180 81 0.377
385 63 0.174 38 0.104 4 0.010
472 0 0.000 7 0.015 5 0.011
539 551 63 0.124 1 0.001 48 0.094
651 654 3 0.005 46 0.075 17 0.028
731 6 0.009 21 0.031 7 0.010
830 4 0.005 8 0.010 0 0.000
1059 1066 20 0.020 1 0.001 12 0.012
1178 1178 0 0.000 9 0.008 8 0.007
1278 1285 30 0.025 4 0.003 8 0.007
1311 1302 98 0.079 145 0.117 357 0.288
1366 1377 162 0.125 1 0.000 112 0.087
1383 36 0.028 64 0.049 143 0.109
1438 17 0.013 23 0.017 51 0.037
1567 1572 130 0.088 71 0.048 285 0.192
1587 1585 222 0.148 1 0.000 113 0.075
1644 42 0.027 49 0.031 1 0.001
3144 0 0.000 0 0.000 1 0.000
3392 1 0.000 1 0.000 0 0.000
Sum: 0.552 0.276 0.816

Table A.2: As Table 2.6, but for PTCDI.

147



A.5. TABLES OF VIBRONIC MODES

anion cation neutral
λj Sj λj Sj λj Sj

cm−1 cm−1 1 cm−1 1 cm−1 1
96 15 0.155 0 0.000 0 0.000
122 11 0.086 1 0.007 1 0.007
166 2 0.010 0 0.002 0 0.002
214 13 0.061 4 0.020 4 0.020
272 0 0.000 8 0.028 8 0.028
325 3 0.008 1 0.003 1 0.003
387 15 0.038 2 0.006 2 0.006
389 3 0.007 1 0.003 1 0.003
434 49 0.113 15 0.034 15 0.034
539 79 0.146 9 0.016 9 0.016
563 11 0.020 23 0.041 23 0.041
730 6 0.008 2 0.003 2 0.003
846 3 0.004 9 0.010 9 0.010
976 0 0.000 9 0.009 9 0.009
1024 0 0.000 2 0.002 2 0.002
1033 0 0.000 3 0.003 3 0.003
1101 26 0.024 1 0.001 1 0.001
1220 0 0.000 5 0.004 5 0.004
1222 4 0.004 2 0.002 2 0.002
1232 1 0.001 5 0.004 5 0.004
1313 51 0.039 0 0.000 0 0.000
1333 168 0.126 78 0.058 78 0.058
1381 106 0.077 3 0.002 3 0.002
1394 13 0.010 0 0.000 0 0.000
1396 63 0.045 12 0.009 12 0.009
1422 6 0.004 4 0.003 4 0.003
1463 37 0.025 5 0.004 5 0.004
1504 13 0.009 5 0.003 5 0.003
1595 122 0.077 34 0.021 34 0.021
1598 264 0.165 6 0.003 6 0.003
1629 1 0.000 22 0.013 22 0.013
1639 15 0.009 21 0.013 21 0.013
3136 1 0.000 2 0.001 2 0.001
Sum: 0.618 0.162 0.849

Table A.3: As Table 2.6, but for PB31.
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anion cation neutral
λj Sj λj Sj λj Sj

cm−1 cm−1 1 cm−1 1 cm−1 1
132 37 0.278 1 0.011 48 0.360
268 7 0.026 7 0.025 37 0.136
313 35 0.111 23 0.074 8 0.026
461 41 0.088 0 0.000 4 0.008
482 2 0.004 11 0.023 14 0.029
544 124 0.227 1 0.002 57 0.104
552 215 0.389 0 0.000 12 0.021
694 1 0.001 4 0.005 10 0.014
741 8 0.010 8 0.011 13 0.017
842 4 0.004 2 0.002 0 0.000
948 0 0.000 6 0.006 8 0.008
1024 39 0.038 17 0.017 2 0.001
1039 67 0.065 4 0.004 22 0.021
1091 1 0.001 0 0.000 3 0.002
1158 91 0.079 1 0.001 4 0.003
1224 33 0.027 3 0.002 25 0.020
1295 35 0.027 7 0.005 16 0.012
1331 112 0.084 81 0.061 348 0.261
1338 37 0.028 14 0.010 160 0.119
1386 141 0.101 0 0.000 70 0.050
1398 31 0.022 21 0.015 119 0.085
1464 26 0.018 9 0.006 51 0.035
1595 159 0.100 36 0.022 323 0.202
1600 180 0.113 3 0.002 50 0.031
1622 4 0.002 16 0.010 0 0.000
1645 10 0.006 40 0.024 9 0.005
3001 30 0.010 0 0.000 4 0.001
3002 128 0.043 0 0.000 22 0.007
3081 19 0.006 0 0.000 2 0.001
3082 20 0.006 0 0.000 3 0.001
3137 3 0.001 1 0.000 0 0.000
3159 49 0.015 0 0.000 9 0.003
3205 3 0.001 0 0.000 3 0.001
Sum: 0.710 0.186 0.859

Table A.4: As Table 2.6, but for PR149.
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mode cation anion neutral
B3LYP Raman [65] DFT DFT c-DFT

λj Sj λj Sj λj Sj

(cm−1) (cm−1) (1) (cm−1) (1) (cm−1) (1) (cm−1)
215 220 8 0.040 29 0.144 69 0.339
449 1 0.002 0 0.001 1 0.003
529 535 37 0.074 11 0.021 64 0.127
626 632 35 0.059 0 0.001 31 0.052
697 0 0.000 1 0.002 1 0.002
833 0 0.000 5 0.006 1 0.001
995 0 0.000 0 0.000 0 0.000
1021 1068 1 0.001 3 0.003 2 0.002
1089 1089 62 0.060 0 0.000 19 0.018
1155 7 0.007 7 0.007 0 0.000
1208 7 0.006 4 0.003 1 0.001
1277 1284 143 0.118 153 0.127 449 0.371
1312 3 0.003 59 0.047 68 0.054
1314 1323 17 0.013 6 0.004 1 0.001
1387 1399 206 0.157 4 0.003 179 0.137
1421 10 0.008 80 0.060 107 0.080
1447 1459 175 0.128 13 0.010 195 0.142
1567 0 0.000 10 0.007 7 0.005
1584 4 0.002 16 0.011 35 0.024
1592 1611 84 0.056 43 0.029 142 0.094
3084 0 0.000 0 0.000 0 0.000
3086 1 0.000 1 0.000 0 0.000
3105 1 0.000 1 0.000 0 0.000
3110 0 0.000 1 0.000 1 0.000
Sum: 0.560 0.311 0.929

Table A.5: As Table 2.6, but for DIP.
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List of Abbreviations

1D one-dimensional
3D three-dimensional
α, β indices for the differently aligned molecules in a unit cell
a, a unit-cell vector and its length
AO atomic orbital
α, β summation indices for basis molecules in unit cell
A, B indices of basis molecules in unit cell
α(ω) absorption
AFM atomic force microscopy
b, b unit-cell vector and its length

b†nανe;nα0g
creation operator for neutral excitation on specific molecule

b†kξν creation operator for Frenkel exciton with wave vector k and transition

dipole along ξ = x or ξ = y

b†kανe
creation operator for Frenkel exciton with wave vector k and transition
dipole along α molecule

B3LYP hybrid functional with three adjusted parameters according to Becke
and Lee-Yang-Parr

c, c unit-cell vector and its length
c†nαγη,σ creation operator for localized CT state

c†kαγη,σ creation operator for CT exciton in k-space

χs
nα vibronic wave function in electronic state s on molecule α in unit cell n.

CGTO contracted Gaussian-type orbital
CI configuration interaction
CT charge-transfer
D environment shift of the transition energies
DFT density functional theory
δ angle between the molecular HOMO-LUMO transition dipole and the

lattice vector b
DIP diindenoperylene
DZ double-ζ basis set

151



DZVP double-ζ valence polarized basis set
E00 energy distance between the lowest vibronic state in the electronic

ground state and the lowest vibronic state in the electronic excited state
ECT

00 transition energy of the CT exciton
EF

00 transition energy of the Frenkel exciton
F Frenkel
F-CT Frenkel exciton and charge transfer state
GGA generalized gradient approximation
GTO Gaussian-type orbital
HF Frenkel Hamiltonian
HF−CT part of Hamiltonian mixing Frenkel and CT states
HCT CT Hamiltonian
HF Hartree-Fock
h̄ωeff effective internal vibration factor
HOMO highest occupied molecular orbital
Hg superposition of HOMOs of two stacked molecules with even parity
Hu superposition of HOMOs of two stacked molecules with odd parity
k k-space representation
λ reorganization energy
LCAO linear combination of atomic orbitals
LDA local density approximation
LUMO lowest unoccupied molecular orbital
Lg superposition of LUMOs of two stacked molecules with even parity
Lu superposition of LUMOs of two stacked molecules with odd parity
µ dipole moment
µA, µB transition dipole moments for A and B basis vectors respectively
Me-PTCDI N,N-dimethyl-3,4,9,10-perylenetetracarboxylic diimide
MO molecular orbital
ν, µ vibronic level of the Frenkel state
γ+ vibronic level for the cationic state
η− vibronic level for the anionic state
n, m unit cell
OD optical density
OLED organic light emitting diode
OMBD organic molecular beam deposition
Ωg transition frequency
ω internal vibrational mode
ϕ angle between basis molecules in the unit cell
PB31 pigment black 31: N,N-bis(2-phenylethyl)-perylene-3,4,9,10-bis(dicarboximide)
PES potential energy surface
PL photoluminescence
PR149 pigment red 149: N,N-Bis(3,5-xylyl) perylene-3,4,9,10-bis(dicarboximide)
PTCDA 3,4,9,10-perylene tetracarboxylic dianhydride
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PTCDI 3,4,9,10-perylene-bis(dicarboximide)
χ(0) static susceptibility
RHF restricted Hartree-Fock
Rnα;mβ distance vector between two molecules
Sνµ Franck-Condon overlap factor
S Huang-Rhys factor for the neutral excited state
S− Huang-Rhys factor for the anionic state
S+ Huang-Rhys factor for the cationic state
σν Gaussian broadening for vibronic mode ν
SCF self-consistent field
STO Slater type orbitals
SVP single valence polarized basis set
te electron transfer parameter
th hole transfer parameter
tH HOMO transfer parameter
tL LUMO transfer parameter
tnανe;mβµe

transfer matrix element
TAA Frenkel transfer parameter between same basis molecules
TAB Frenkel transfer parameter between different basis molecules
TD-DFT time-dependent density functional theory
TZ triple-ζ basis set
TZVP triple-ζ valence polarized basis set
UV ultra violet
V crystal volume
VASE variable angle spectroscopic ellipsometry
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